Do you want to publish a course? Click here

Minimax rates of entropy estimation on large alphabets via best polynomial approximation

185   0   0.0 ( 0 )
 Added by Yihong Wu
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Consider the problem of estimating the Shannon entropy of a distribution over $k$ elements from $n$ independent samples. We show that the minimax mean-square error is within universal multiplicative constant factors of $$Big(frac{k }{n log k}Big)^2 + frac{log^2 k}{n}$$ if $n$ exceeds a constant factor of $frac{k}{log k}$; otherwise there exists no consistent estimator. This refines the recent result of Valiant-Valiant cite{VV11} that the minimal sample size for consistent entropy estimation scales according to $Theta(frac{k}{log k})$. The apparatus of best polynomial approximation plays a key role in both the construction of optimal estimators and, via a duality argument, the minimax lower bound.



rate research

Read More

450 - Xiyang Liu , Sewoong Oh 2019
Differential privacy has become a widely accepted notion of privacy, leading to the introduction and deployment of numerous privatization mechanisms. However, ensuring the privacy guarantee is an error-prone process, both in designing mechanisms and in implementing those mechanisms. Both types of errors will be greatly reduced, if we have a data-driven approach to verify privacy guarantees, from a black-box access to a mechanism. We pose it as a property estimation problem, and study the fundamental trade-offs involved in the accuracy in estimated privacy guarantees and the number of samples required. We introduce a novel estimator that uses polynomial approximation of a carefully chosen degree to optimally trade-off bias and variance. With $n$ samples, we show that this estimator achieves performance of a straightforward plug-in estimator with $n ln n$ samples, a phenomenon referred to as effective sample size amplification. The minimax optimality of the proposed estimator is proved by comparing it to a matching fundamental lower bound.
171 - Yunpeng Zhao 2021
We prove a Bernstein-type bound for the difference between the average of negative log-likelihoods of independent discrete random variables and the Shannon entropy, both defined on a countably infinite alphabet. The result holds for the class of discrete random variables with tails lighter than or on the same order of a discrete power-law distribution. Most commonly-used discrete distributions such as the Poisson distribution, the negative binomial distribution, and the power-law distribution itself belong to this class. The bound is effective in the sense that we provide a method to compute the constants in it.
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative $alpha$-entropies (denoted $mathscr{I}_{alpha}$), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative $alpha$-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative $alpha$-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum R{e}nyi or Tsallis entropy principle. The minimizing probability distribution (termed forward $mathscr{I}_{alpha}$-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse $mathscr{I}_{alpha}$-projection is studied.
141 - Igal Sason , Sergio Verdu 2015
A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csiszar and Talata. It is further extended to an upper bound on the Renyi divergence of an arbitrary non-negative order (including $infty$) as a function of the total variation distance.
This paper deals with the problem of universal lossless coding on a countable infinite alphabet. It focuses on some classes of sources defined by an envelope condition on the marginal distribution, namely exponentially decreasing envelope classes with exponent $alpha$. The minimax redundancy of exponentially decreasing envelope classes is proved to be equivalent to $frac{1}{4 alpha log e} log^2 n$. Then a coding strategy is proposed, with a Bayes redundancy equivalent to the maximin redundancy. At last, an adaptive algorithm is provided, whose redundancy is equivalent to the minimax redundancy
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا