Do you want to publish a course? Click here

An Effective Bernstein-type Bound on Shannon Entropy over Countably Infinite Alphabets

172   0   0.0 ( 0 )
 Added by Yunpeng Zhao
 Publication date 2021
and research's language is English
 Authors Yunpeng Zhao




Ask ChatGPT about the research

We prove a Bernstein-type bound for the difference between the average of negative log-likelihoods of independent discrete random variables and the Shannon entropy, both defined on a countably infinite alphabet. The result holds for the class of discrete random variables with tails lighter than or on the same order of a discrete power-law distribution. Most commonly-used discrete distributions such as the Poisson distribution, the negative binomial distribution, and the power-law distribution itself belong to this class. The bound is effective in the sense that we provide a method to compute the constants in it.



rate research

Read More

This paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets. Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost) adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing envelopes. Those results extend ourknowledge concerning universal coding to contexts where the key tools from parametric inference
This paper deals with the problem of universal lossless coding on a countable infinite alphabet. It focuses on some classes of sources defined by an envelope condition on the marginal distribution, namely exponentially decreasing envelope classes with exponent $alpha$. The minimax redundancy of exponentially decreasing envelope classes is proved to be equivalent to $frac{1}{4 alpha log e} log^2 n$. Then a coding strategy is proposed, with a Bayes redundancy equivalent to the maximin redundancy. At last, an adaptive algorithm is provided, whose redundancy is equivalent to the minimax redundancy
141 - Igal Sason , Sergio Verdu 2015
A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csiszar and Talata. It is further extended to an upper bound on the Renyi divergence of an arbitrary non-negative order (including $infty$) as a function of the total variation distance.
Shannon gave a lower bound in 1959 on the binary rate of spherical codes of given minimum Euclidean distance $rho$. Using nonconstructive codes over a finite alphabet, we give a lower bound that is weaker but very close for small values of $rho$. The construction is based on the Yaglom map combined with some finite sphere packings obtained from nonconstructive codes for the Euclidean metric. Concatenating geometric codes meeting the TVZ bound with a Lee metric BCH code over $GF(p),$ we obtain spherical codes that are polynomial time constructible. Their parameters outperform those obtained by Lachaud and Stern in 1994. At very high rate they are above 98 per cent of the Shannon bound.
326 - Tobias Koch 2015
The Shannon lower bound is one of the few lower bounds on the rate-distortion function that holds for a large class of sources. In this paper, it is demonstrated that its gap to the rate-distortion function vanishes as the allowed distortion tends to zero for all sources having a finite differential entropy and whose integer part is finite. Conversely, it is demonstrated that if the integer part of the source has an infinite entropy, then its rate-distortion function is infinite for every finite distortion. Consequently, the Shannon lower bound provides an asymptotically tight bound on the rate-distortion function if, and only if, the integer part of the source has a finite entropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا