Do you want to publish a course? Click here

NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

107   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma=1.17 +/-0.08 (at 90% confidence) with a 3-79 keV luminosity of 7.4+/-0.4 x 10^32 erg/s. Significant orbital modulation was observed with a modulation fraction of 36+/-10%. During the October 19-21 observation, the spectrum is described by a softer power law (Gamma=1.66+/-0.06) with an average luminosity of 5.8+/-0.2 x 10^33 erg/s and a peak luminosity of ~1.2 x 10^34 erg/s observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp edged, flat bottomed `dips are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk.

rate research

Read More

The radio millisecond pulsar PSR J1023+0038 exhibits complex timing and eclipse behavior. Here we analyze four years worth of radio monitoring observations of this object. We obtain a long-term timing solution, albeit with large residual timing errors as a result of apparent orbital period variations. We also observe variable eclipses when the companion passes near our line of sight, excess dispersion measure near the eclipses and at random orbital phases, and short-term disappearances of signal at random orbital phases. We interpret the eclipses as possibly due to material in the companions magnetosphere supported by magnetic pressure, and the orbital period variations as possibly due to a gravitational quadrupole coupling mechanism. Both of these mechanisms would be the result of magnetic activity in the companion, in conflict with evolutionary models that predict it should be fully convective and hence non-magnetic. We also use our timing data to test for orbital and rotational modulation of the systems $gamma$-ray emission, finding no evidence for orbital modulation and $3.7sigma$ evidence for modulation at the pulsar period. The energetics of the system make it plausible that the $gamma$-ray emission we observe is entirely from the millisecond pulsar itself, but it seems unlikely for these $gamma$-rays to provide the irradiation of the companion, which we attribute instead to X-ray heating from a shock powered by a particle wind.
120 - T. Shahbaz 2015
We present time-resolved optical photometry of the binary millisecond `redback pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingress/egress time of ~20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active and `passive luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive and active state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.
We present time-resolved optical spectroscopy of the `redback binary millisecond pulsar system PSR J1023+0038 during both its radio pulsar (2009) and accretion disc states (2014 and 2016). We provide observational evidence for the companion star being heated during the disc-state. We observe a spectral type change along the orbit, from G5 to F6 at the secondary stars superior and inferior conjunction, respectively, and find that the corresponding irradiating luminosity can be powered by the high energy accretion luminosity or the spin-down luminosity of the neutron star. We determine the secondary stars radial velocity semi-amplitude from the metallic (primarily Fe and Ca) and Halpha absorption lines during these different states. The metallic and Halpha radial velocity semi-amplitude determined from the 2009 pulsar-state observations allows us to constrain the secondary stars true radial velocity K_2=276.3+/-5.6 km/s and the binary mass ratio q=0.137+/-0.003. By comparing the observed metallic and Halpha absorption-line radial velocity semi-amplitudes with model predictions, we can explain the observed semi-amplitude changes during the pulsar-state and during the pulsar/disc-state transition as being due to different amounts of heating and the presence of an accretion disc, respectively.
173 - A. Papitto , D.F. Torres 2015
The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter, has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk, it emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumption that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk-magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray band. The average emission observed from PSR J1023+0038 is modelled by a disk in-flow with a rate of $(1-3)times10^{-11} M_{odot}/yr$, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that rather assume that a rotation-powered pulsar is turned on, showing how the spin down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.
We report on the first simultaneous XMM-Newton, NuSTAR and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا