Do you want to publish a course? Click here

Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

83   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the first simultaneous XMM-Newton, NuSTAR and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.



rate research

Read More

PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, optical and X-ray pulses were emitted within a few km, had similar pulse shape and distribution of the pulsed flux density compatible with a power-law relation $F_{ u} propto u^{-0.7}$ connecting the optical and the 0.3-45 keV X-ray band. Optical pulses were detected also during flares with a pulsed flux reduced by one third with respect to the high mode; the lack of a simultaneous detection of X-ray pulses is compatible with the lower photon statistics. We show that magnetically channeled accretion of plasma onto the surface of the neutron star cannot account for the optical pulsed luminosity ($sim 10^{31}$ erg/s). On the other hand, magnetospheric rotation-powered pulsar emission would require an extremely efficient conversion of spin-down power into pulsed optical and X-ray emission. We then propose that optical and X-ray pulses are instead produced by synchrotron emission from the intrabinary shock that forms where a striped pulsar wind meets the accretion disk, within a few light cylinder radii away, $sim$ 100 km, from the pulsar.
We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less luminous X-ray mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation to identify candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.
We report on a NIR, optical and X-ray campaign performed in 2017 with the XMM-Newton and Swift satellites and the VLT/HAWK-I instrument on the transitional MSP PSR J1023+0038. NIR observations were performed in fast-photometric mode in order to detect any fast variation of the flux and correlate them with the optical and X-ray light curves. The optical curve shows the typical sinusoidal modulation at the orbital period (4.75hr). No flaring or flickering is found in the optical, neither signs of transitions between active and passive states. On the contrary, the NIR curve displays a bimodal behaviour, showing strong flares in the first part of the curve, and an almost flat trend in the rest. The X-ray curves show a few low/high mode transitions, but no flaring activity. One of the low/high mode transition is found to happen at the same time as the emission of an infrared flare. This can be interpreted as the emission of a jet: the NIR flare could be due to the evolving spectrum of the jet, which possesses a break frequency that moves from higher (NIR) to lower (radio) frequencies after the launching, that has to happen at the low/high mode transition. We also present the cross correlation function between the optical and near infrared curves. Due to the bimodality of the NIR curve, we divided it in two parts (flaring and quiet). While the CCF of the quiet part is found to be flat, the one referring to the flaring part shows a narrow peak at ~10s, which indicates a delay of the NIR emission with respect to the optical. This lag can be interpreted as reprocessing of the optical emission at the light cylinder radius with a stream of matter spiraling around the system due to a phase of radio-ejection. This strongly supports a different origin of the NIR flares observed for PSR J1023+0038 with respect to the optical and X-ray flaring activity reported in other works on the same source.
92 - T. Shahbaz 2018
We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r- and K_s-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anti-correlation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron stars magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled onto the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.
We present time-resolved optical spectroscopy of the `redback binary millisecond pulsar system PSR J1023+0038 during both its radio pulsar (2009) and accretion disc states (2014 and 2016). We provide observational evidence for the companion star being heated during the disc-state. We observe a spectral type change along the orbit, from G5 to F6 at the secondary stars superior and inferior conjunction, respectively, and find that the corresponding irradiating luminosity can be powered by the high energy accretion luminosity or the spin-down luminosity of the neutron star. We determine the secondary stars radial velocity semi-amplitude from the metallic (primarily Fe and Ca) and Halpha absorption lines during these different states. The metallic and Halpha radial velocity semi-amplitude determined from the 2009 pulsar-state observations allows us to constrain the secondary stars true radial velocity K_2=276.3+/-5.6 km/s and the binary mass ratio q=0.137+/-0.003. By comparing the observed metallic and Halpha absorption-line radial velocity semi-amplitudes with model predictions, we can explain the observed semi-amplitude changes during the pulsar-state and during the pulsar/disc-state transition as being due to different amounts of heating and the presence of an accretion disc, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا