Do you want to publish a course? Click here

Collective quantum phase slips in multiple nanowire junctions

116   0   0.0 ( 0 )
 Added by Zeng-Zhao Li
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Realization of robust coherent quantum phase slips represents a significant experimental challenge. Here we propose a new design consisting of multiple nanowire junctions to realize a phase-slip flux qubit. It admits good tunability provided by gate voltages applied on superconducting islands separating nanowire junctions. In addition, the gates and junctions can be identical or distinct to each other leading to symmetric and asymmetric setups. We find that the asymmetry can improve the performance of the proposed device, compared with the symmetric case. In particular, it can enhance the effective rate of collective quantum phase slips. Furthermore, we demonstrate how to couple two such devices via a mutual inductance. This is potentially useful for quantum gate operations. Our investigation on how symmetry in multiple nanowire junctions affects the device performance should be useful for the application of phase-slip flux qubits in quantum information processing and quantum metrology.



rate research

Read More

We present a Josephson junction based on a Ge-Si core-shell nanowire with transparent superconducting Al contacts, a building block which could be of considerable interest for investigating Majorana bound states, superconducting qubits and Andreev (spin) qubits. We demonstrate the dc Josephson effect in the form of a finite supercurrent through the junction, and establish the ac Josephson effect by showing up to 23 Shapiro steps. We observe multiple Andreev reflections up to the sixth order, indicating that charges can scatter elastically many times inside our junction, and that our interfaces between superconductor and semiconductor are transparent and have low disorder.
110 - S. Baba , S. Matsuo , H. Kamata 2017
We report fabrication and measurement of a device where closely-placed two parallel InAs nanowires (NWs) are contacted by source and drain normal metal electrodes. Established technique includes selective deposition of double nanowires onto a previously defined gate region. By tuning the junction with the finger bottom gates, we confirmed the formation of parallel double quantum dots, one in each NW, with a finite electrostatic coupling between each other. With the fabrication technique established in this study, devices proposed for more advanced experiments, such as Cooper-pair splitting and the observation of parafermions, can be realized.
We have measured the resistance vs. temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1050 nm. With decreasing cross-sectional areas, the wires display increasingly broad resistive transitions. The data are in very good agreement with a model that includes both thermally activated phase slips close to Tc and quantum phase slips (QPS) at low temperatures, but disagree with an earlier model based on a critical value of R_n/Rq. Our measurements provide strong evidence for QPS in thin superconducting wires.
We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.
Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana fermions towards the realisation of fault-tolerant topological quantum computing. In this study, we employ the Keldysh Non-Equilibrium Greens function formalism to model quantum transport in normal-superconductor junctions. We analyze III-V semiconductor nanowire Josephson junctions (InAs/Nb) using a three-dimensional discrete lattice model described by the Bogolubov-de Gennes Hamiltonian in the tight-binding approximation, and compute the Andreev bound state spectrum and current-phase relations. Recent experiments [Zuo et al., Phys. Rev. Lett. 119,187704 (2017)] and [Gharavi et al., arXiv:1405.7455v2 (2014)] reveal critical current oscillations in these devices, and our simulations confirm these to be an interference effect of the transverse sub-bands in the nanowire. We add disorder to model coherent scattering and study its effect on the critical current oscillations, with an aim to gain a thorough understanding of the experiments. The oscillations in the disordered junction are highly sensitive to the particular realisation of the random disorder potential, and to the gate voltage. A macroscopic current measurement thus gives us information about the microscopic profile of the junction. Finally, we study dephasing in the channel by including elastic phase-breaking interactions. The oscillations thus obtained are in good qualitative agreement with the experimental data, and this signifies the essential role of phase-breaking processes in III-V semiconductor nanowire Josephson junctions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا