Do you want to publish a course? Click here

Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots

178   0   0.0 ( 0 )
 Added by Jason Petta
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.



rate research

Read More

131 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 1100 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
We study the g-factor of discrete electron states in InAs nanowire based quantum dots. The g values are determined from the magnetic field splitting of the zero bias anomaly due to the spin 1/2-Kondo effect. Unlike to previous studies based on 2DEG quantum dots, the g-factors of neighboring electron states show a surprisingly large fluctuation: g can scatter between 2 and 18. Furthermore electric gate tunability of the g-factor is demonstrated.
We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general trend just depending on the total orbital energy of the trapped electrons. We show that a qualitatively different regime is observed at relatively low filling numbers, where tunneling rates are rather controlled by the axial configuration of the electron orbital. Transmission rates versus filling are further modified by acting on the radial configuration of the orbitals by means of electrostatic gating, and the barrier transparency for the various orbitals is found to evolve as expected from numerical simulations. The possibility to exploit this mechanism to achieve a controlled continuous tuning of the tunneling rate of an individual Coulomb blockade resonance is discussed.
We investigate how the voltage control of the exciton lateral dipole moment induces a transition from singly to doubly connected topology in type II InAs/GaAsSb quantum dots. The latter causes visible Aharonov-Bohm oscillations and a change of the exciton g-factor which are modulated by the applied bias. The results are explained in the frame of realistic $mathbf{k}cdotmathbf{p}$ and effective Hamiltonian models and could open a venue for new spin quantum memories beyond the InAs/GaAs realm.
We present angle-dependent measurements of the effective g-factor g* in a Ge-Si core-shell nanowire quantum dot. g* is found to be maximum when the magnetic field is pointing perpendicular to both the nanowire and the electric field induced by local gates. Alignment of the magnetic field with the electric field reduces g* significantly. g* is almost completely quenched when the magnetic field is aligned with the nanowire axis. These findings confirm recent calculations, where the obtained anisotropy is attributed to a Rashba-type spin-orbit interaction induced by heavy-hole light-hole mixing. In principle, this facilitates manipulation of spin-orbit qubits by means of a continuous high-frequency electric field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا