No Arabic abstract
The interplay between different ordered phases, such as superconducting, charge or spin ordered phases, is of central interest in condensed matter physics. The very recent discovery of superconductivity with a remarkable T$_c$= 26 K in Fe-based oxypnictide La(O$_{1-x}$F$_x$)FeAs is a surprise to the scientific communitycite{Kamihara08}. The pure LaOFeAs itself is not superconducting but shows an anomaly near 150 K in both resistivity and dc magnetic susceptibility. Here we provide combined experimental and theoretical evidences showing that the anomaly is caused by the spin-density-wave (SDW) instability, and electron-doping by F suppresses the SDW instability and recovers the superconductivity. Therefore, the La(O$_{1-x}$F$_x$)FeAs offers an exciting new system showing competing orders in layered compounds.
A series of layered CeO$_{1-x}$F$_x$FeAs compounds with x=0 to 0.20 are synthesized by solid state reaction method. Similar to the LaOFeAs, the pure CeOFeAs shows a strong resistivity anomaly near 145 K, which was ascribed to the spin-density-wave instability. F-doping suppresses this instability and leads to the superconducting ground state. Most surprisingly, the superconducting transition temperature could reach as high as 41 K. The very high superconducting transition temperature strongly challenges the classic BCS theory based on the electron-phonon interaction. The very closeness of the superconducting phase to the spin-density-wave instability suggests that the magnetic fluctuations play a key role in the superconducting paring mechanism. The study also reveals that the Ce 4f electrons form local moments and ordered antiferromagnetically below 4 K, which could coexist with superconductivity.
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calculations, the observed phonon modes can be assigned accordingly. In LaO$_{1-x}$F$_x$FeAs, the E$_g$ and A$_{1g}$ modes related to the vibrations of La, are suppressed with increasing F doping. However F doping only has a small effect on the E$_g$ and A$_{1g}$ modes of Fe and As. The Raman modes of La and As are absent in rare-earth substituted CeO$_{1-x}$F$_x$FeAs, and the E$_g$ mode of oxygen, corresponding to the in-plane vibration of oxygen, moves to around 450 cm$^{-1}$ and shows a very sharp peak. Electronic scattering background is low and electron-phonon coupling is not evident for the observed phonon modes. Three features are found above 500 cm$^{-1}$, which may be associated with multi-phonon process. Nevertheless it is also possible that they are related to magnetic fluctuations or interband transitions of d orbitals considering their energies.
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce magnetic coupling is rather weak with, however, a strong Fe-Ce coupling. Comparison of the origin of the tetragonal to orthorhombic structural distortion in CeOFeAs and LaOFeAs show marked differences; in CeOFeAs the distortion is stabilized by a lowering of spectral weight at the Fermi level, while in LaOFeAs by a reduction in magnetic frustration. Finally, we investigate the impact of electron doping upon CeOFeAs and show that while the ground state Fe moment remains largely unchanged by doping, the stability of magnetic order goes to zero at a doping that corresponds well to the vanishing of the Neel temperature.
High resolution photoemission measurements have been carried out on non-superconducting SmOFeAs parent compound and superconducting Sm(O$_{1-x}$F$_x$)FeAs (x=0.12, and 0.15) compounds. The momentum-integrated spectra exhibit a clear Fermi cutoff that shows little leading-edge shift in the superconducting state which suggests the Fermi surface sheet(s) around the $Gamma$ point may not be gapped in this multiband superconductors. A robust feature at 13 meV is identified in all these samples. Spectral weight suppression near E$_F$ with decreasing temperature is observed in both undoped and doped samples that points to a possible existence of a pseudogap in these Fe-based compounds.
The discovery of charge- and spin-density-wave (CDW/SDW) orders in superconducting cuprates has altered our perspective on the nature of high-temperature superconductivity (SC). However, it has proven difficult to fully elucidate the relationship between the density wave orders and SC. Here using resonant soft X-ray scattering we study the archetypal cuprate, La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over a broad doping range. We reveal the existence of two types of CDW orders in LSCO, namely CDW stripe order and CDW short-range order (SRO). While the CDW-SRO is suppressed by SC, it is partially transformed into the CDW stripe order with developing SDW stripe order near the superconducting $T_{rm c}$. These findings indicate that the stripe orders and SC are inhomogeneously distributed in the superconducting CuO$_2$ planes of LSCO. This further suggests a new perspective on the putative pair-density-wave order that coexists with SC, SDW, and CDW orders.