No Arabic abstract
A commercially available calorimeter has been used to investigate the specific heat of a high-quality kn single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 , mathrm{K} leq T leq 0.54 , mathrm{K}$. The data of the kn crystal imply the presence of a large $T^2$ contribution to the specific heat which gives evidence of $d$-wave order parameter symmetry in the superconducting state. To improve the measurements, a novel design for a calorimeter with a paramagnetic temperature sensor is presented. It promises a temperature resolution of $Delta T approx 0.1 , mathrm{mu K}$ and an addenda heat capacity less than $200 , mathrm{pJ/K}$ at $ T < 100 , mathrm{mK}$.
Swept bias experiments carried out on Josephson junctions yield the distributions of the probabilities of early switching from the zero voltage state. Kramers theory of thermally activated escape from a one-dimensional potential is well known to fall short of explaining such experiments when the junctions are at millikelvin temperatures. We propose a simple revision of the theory which is shown to yield extremely good agreement with experimental data.
The low-temperature specific heat of a superconductor Mo3Sb7 with T_c = 2.25 (0.05) K has been measured in magnetic fields up to 5 T. In the normal state, the electronic specific heat coefficient gamma_n, and the Debye temperature Theta_D are found to be 34.5(2) mJ/molK^2 and 283(5) K, respectively. The enhanced gamma_n value is interpreted due to a narrow Mo-4d band pinned at the Fermi level. The electronic specific heat in the superconducting state can be analyzed in terms a phenomenological two BCS-like gap model with the gap widths 2Delta_1/k_BT_c = 4.0 and 2Delta_2/k_BT_c = 2.5, and relative weights of the mole electronic heat coefficients gamma_1/gamma_n = 0.7 and gamma_2/gamma_n = 0.3. Some characteristic thermodynamic parameters for the studied superconductor, like the specific heat jump at T_c, DeltaC_p(T_c)/gamma_nT_c, the electron-phonon coupling constant,lambda_eph, the upper H_c2 and thermodynamic critical H_c0 fields, the penetration depth, lambda, coherence length xi, and the Ginzburg-Landau parameter kappa are evaluated. The estimated values of parameters like 2Delta/k_BT_c, DeltaC_p(T_c)/gamma_nT_c, N(E_F), and lambda_eph suggest that Mo3Sb7 belongs to intermediate-coupling regime. The electronic band structure calculations indicate that the density of states near the Fermi level is formed mainly by the Mo-4d orbitals and there is no overlapping between the Mo- 4d and Sb-sp orbitals.
The magnetization at low temperatures for Nd0.5Sr0.5MnO3 and Nd0.5Ca0.5MnO3 samples showed a rapid increase with decreasing temperatures, contrary to a La0.5Ca0.5MnO3 sample. Specific heat measurement at low temperatures showed a Schottky-like anomaly for the first two samples. However, there is not a straight forward correlation between the intrinsic magnetic moment of the Nd3+ ions and the Schottky-like anomaly.
We present a detailed study of the quasiparticle contribution to the low-temperature specific heat of an extreme type-II superconductor at high magnetic fields. Within a T-matrix approximation for the self-energies in the mixed state of a homogeneous superconductor, the electronic specific heat is a linear function of temperature with a linear-$T$ coefficient $gamma_s(H)$ being a nonlinear function of magnetic field $H$. In the range of magnetic fields $Hagt (0.15-0.2)H_{c2}$ where our theory is applicable, the calculated $gamma_s(H)$ closely resembles the experimental data for the borocarbide superconductor YNi$_2$B$_2$C.
Low-temperature specific heat (SH) is measured for the 12442-type KCa$_2$Fe$_4$As$_4$F$_2$ single crystal under different magnetic fields. A clear SH jump with the height of $Delta C/T|_{T_c}$ = 130 mJ/mol K$^2$ is observed at the superconducting transition temperature $T_c$. It is found that the electronic SH coefficient $Deltagamma (H)$ quickly increases when the field is in the low-field region below 3 T and then considerably slows down the increase with a further increase in the field, which indicates a rather strong anisotropy or multi-gap feature with a small minimum in the superconducting gap(s). The temperature-dependent SH data indicates the presence of the $T^2$ term, which supplies further information and supports the picture with a line-nodal gap structure. Moreover, the onset point of the SH transition remains almost unchanged under the field as high as 9 T, which is similar to that observed in cuprates, and placed this system in the middle between the BCS limit and the Bose-Einstein condensation.