Do you want to publish a course? Click here

Experimental confirmation of spin gap in antiferromagnetic alternating spin-3/2 chain substances RCrGeO5 (R = Y or 154Sm) by inelastic neutron scattering experiments

442   0   0.0 ( 0 )
 Added by Masashi Hase
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A spin-singlet ground state with a spin gap has been discovered in antiferromagnetic spin chain substances when the spin value is 1/2, 1 or 2. To find spin gap (singlet-triplet) excitations in spin-3/2 chain substances, we performed inelastic neutron scattering and magnetization measurements on {it R}CrGeO$_5$ ({it R} = Y or Sm) powders. As expected, we observed spin gap excitations and the dispersion relation of the lowest magnetic excitations. We proved that the spin system of Cr$^{3+}$ was an antiferromagnetic alternating spin-3/2 chain.



rate research

Read More

139 - M. Matsuda , J. Ma , V. O. Garlea 2019
We report inelastic neutron scattering experiments in Ca2Y2Cu5O10 and map out the full one magnon dispersion which extends up to a record value of 53 meV for frustrated ferromagnetic (FM) edge-sharing CuO2 chain (FFESC) cuprates. A homogeneous spin-1/2 chain model with a FM nearest-neighbor (NN), an antiferromagnetic (AFM) next-nearest-neighbor (NNN) inchain, and two diagonal AFM interchain couplings (ICs) analyzed within linear spin-wave theory (LSWT) reproduces well the observed strong dispersion along the chains and a weak one perpendicularly. The ratio R=|J_{a2}/J_{a1}| of the FM NN and the AFM NNN couplings is found as ~0.23, close to the critical point Rc=1/4 which separates ferromagnetically and antiferromagnetically correlated spiral magnetic ground states in single chains, whereas Rc>0.25 for coupled chains is considerably upshifted even for relatively weak IC. Although the measured dispersion can be described by homogeneous LSWT, the scattering intensity appears to be considerably reduced at ~11.5 and ~28 meV. The gap-like feature at 11.5 meV is attributed to magnon-phonon coupling whereas based on DMRG simulations of the dynamical structure factor the gap at 28 meV is considered to stem partly from quantum effects due to the AFM IC. Another contribution is ascribed to the intrinsic superstructure from the distorting incommensurate pattern of CaY cationic chains adjacent to the CuO2 ones. It gives rise to non-equivalent CuO4 units and Cu-O-Cu bond angles Phi and a resulting distribution of all exchange integrals. The Js fitted by homogeneous LSWT are regarded as average values. The record value of the FM NN integral J1=24 meV among FFESC cuprates can be explained by a non-universal Phi (not 90 deg.) and Cu-O bond length dependent anisotropic mean direct FM Cu-O exchange K_{pd}~120 meV. Enhanced K_{pd} values are also needed to compensate a significant AFM J_{dd} > ~6 meV.
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local-moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.
176 - L. M. Chen , X. M. Wang , W. P. Ke 2011
We report a study of the low-temperature heat transport in the quasi-one-dimensional S = 1/2 alternating antiferromagnetic-ferromagnetic chain compound (CH_{3})_{2}NH_{2}CuCl_{3}. Both the temperature and magnetic-field dependencies of thermal conductivity are very complicated, pointing to the important role of spin excitations. It is found that magnetic excitations act mainly as the phonon scatterers in a broad temperature region from 0.3 to 30 K. In magnetic fields, the thermal conductivity show drastic changes, particularly at the field-induced transitions from the low-field N{e}el state to the spin-gapped state, the field-induced magnetic ordered state, and the spin polarized state. In high fields, the phonon conductivity is significantly enhanced because of the weakening of spin fluctuations.
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the origin of two-dimensional reciprocal space. The signal is highly dispersive, and decreases in intensity with increasing temperature. We interpret these observations as direct evidence for the existence of ferromagnetic spin fluctuations within the cobalt-oxygen layers.
224 - K. Tomiyasu , H. Suzuki , M. Toki 2008
We measured two magnetic modes with finite and discrete energies in an antiferromagnetic ordered phase of a geometrically frustrated magnet MgCr2O4 by single-crystal inelastic neutron scattering, and clarified the spatial spin correlations of the two levels: one is an antiferromagnetic hexamer and the other is an antiferromagnetic heptamer. Since these correlation types are emblematic of quasielastic scattering with geometric frustration, our results indicate instantaneous suppression of lattice distortion in an ordered phase by spin-lattice coupling, probably also supported by orbital and charge. The common features in the two levels, intermolecular independence and discreteness of energy, suggest that the spin molecules are interpreted as quasiparticles (elementary excitations with energy quantum) of highly frustrated spins, in analogy with the Fermi liquid approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا