Do you want to publish a course? Click here

Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms

144   0   0.0 ( 0 )
 Added by Martin Kiffner
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techniques. In the case of adiabatic motion in a single internal state, we show that the gauge fields give rise to a magnetic field that results in a Zeeman splitting of the rotational states. In particular, the ground state of a molecular potential well is given by the first excited rotational state. We find that our system realises a synthetic spin-orbit coupling where the relative atomic motion couples to two internal two-atom states. The associated gauge fields are non-Abelian.



rate research

Read More

We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
We show that the resonant dipole-dipole interaction can give rise to bound states between two and three Rydberg atoms with non-overlapping electron clouds. The dimer and trimer states arise from avoided level crossings between states converging to different fine structure manifolds in the limit of separated atoms. We analyze the angular dependence of the potential wells, characterize the quantum dynamics in these potentials and discuss methods for their production and detection. Typical distances between the atoms are of the order of several micrometers which can be resolved in state-of-the-art experiments. The potential depths and typical oscillation frequencies are about one order of magnitude larger as compared to the dimer and trimer states investigated in [PRA $textbf{86}$ 031401(R) (2012)] and [PRL $textbf{111}$ 233003 (2014)], respectively. We find that the dimer and trimer molecules can be aligned with respect to the axis of a weak electric field.
We have observed resonant energy transfer between cold Rydberg atoms in spatially separated cylinders. Resonant dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred down to the 42p state. We have measured the production of the 49p state as a function of separation of the cylinders (0 - 80 um) and the interaction time (0 - 25 us). In addition we measured the width of the electric field resonances. A full many-body quantum calculation reproduces the main features of the experiments.
The Landau levels of cold atomic gases in non-Abelian gauge fields are analyzed. In particular we identify effects on the energy spectrum and density distribution which are purely due to the non-Abelian character of the fields. We investigate in detail non-Abelian generalizations of both the Landau and the symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric gauges may be generated by means of realistically feasible lasers in a tripod scheme.
We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an elementary system of two spins, tuning it from a non-resonant to a resonant regime, where bright (superradiant) and dark (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state. We then show that after preparing an initial single spin excitation and letting it hop due to the spin-exchange interaction, we can freeze the dynamics at will with the addressing laser, while preserving the coherence of the system. In the context of quantum simulation, this scheme opens exciting prospects for engineering inhomogeneous XY spin Hamiltonians or preparing spin-imbalanced initial states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا