No Arabic abstract
Cloud computing is a newly emerging distributed computing which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes so that the tasks can get a balanced allocation or each tasks execution cost decreases to the minimum or the overall system performance is optimal. Unlike the previous task slices sequential execution of an independent task in the model of which the target is processing time, we build a model that targets at the response time, in which the task slices are executed in parallel. Then we give its solution with a method based on an improved adjusting entropy function. At last, we design a new task scheduling algorithm. Experimental results show that the response time of our proposed algorithm is much lower than the game-theoretic algorithm and balanced scheduling algorithm and compared with the balanced scheduling algorithm, game-theoretic algorithm is not necessarily superior in parallel although its objective function value is better.
With the advance in mobile computing, Internet of Things, and ubiquitous wireless connectivity, social sensing based edge computing (SSEC) has emerged as a new computation paradigm where people and their personally owned devices collect sensor measurements from the physical world and process them at the edge of the network. This paper focuses on a privacy-aware task allocation problem where the goal is to optimize the computation task allocation in SSEC systems while respecting the users customized privacy settings. It introduces a novel Game-theoretic Privacy-aware Task Allocation (G-PATA) framework to achieve the goal. G-PATA includes (i) a bottom-up game-theoretic model to generate the maximum payoffs at end devices while satisfying the end users privacy settings; (ii) a top-down incentive scheme to adjust the rewards for the tasks to ensure that the task allocation decisions made by end devices meet the Quality of Service (QoS) requirements of the applications. Furthermore, the framework incorporates an efficient load balancing and iteration reduction component to adapt to the dynamic changes in status and privacy configurations of end devices. The G-PATA framework was implemented on a real-world edge computing platform that consists of heterogeneous end devices (Jetson TX1 and TK1 boards, and Raspberry Pi3). We compare G-PATA with state-of-the-art task allocation schemes through two real-world social sensing applications. The results show that G-PATA significantly outperforms existing approaches under various privacy settings (our scheme achieved as much as 47% improvements in delay reduction for the application and 15% more payoffs for end devices compared to the baselines.).
Cloud computing is a newly emerging distributed system which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes, so that the tasks can get a balanced allocation or each tasks execution cost decreases to the minimum, or the overall system performance is optimal. Unlike task scheduling based on time or cost before, aiming at the special reliability requirements in cloud computing, we propose a non-cooperative game model for reliability-based task scheduling approach. This model takes the steady-state availability that computing nodes provide as the target, takes the task slicing strategy of the schedulers as the game strategy, then finds the Nash equilibrium solution. And also, we design a task scheduling algorithm based on this model. The experiments can be seen that our task scheduling algorithm is better than the so-called balanced scheduling algorithm.
Artificial Intelligence (AI) and Internet of Things (IoT) applications are rapidly growing in todays world where they are continuously connected to the internet and process, store and exchange information among the devices and the environment. The cloud and edge platform is very crucial to these applications due to their inherent compute-intensive and resource-constrained nature. One of the foremost challenges in cloud and edge resource allocation is the efficient management of computation and communication resources to meet the performance and latency guarantees of the applications. The heterogeneity of cloud resources (processors, memory, storage, bandwidth), variable cost structure and unpredictable workload patterns make the design of resource allocation techniques complex. Numerous research studies have been carried out to address this intricate problem. In this paper, the current state-of-the-art resource allocation techniques for the cloud continuum, in particular those that consider time-sensitive applications, are reviewed. Furthermore, we present the key challenges in the resource allocation problem for the cloud continuum, a taxonomy to classify the existing literature and the potential research gaps.
Vehicular Cloud Computing (VCC) is a new technological shift which exploits the computation and storage resources on vehicles for computational service provisioning. Spare on-board resources are pooled by a VCC operator, e.g. a roadside unit, to complete task requests using the vehicle-as-a-resource framework. In this paper, we investigate timely service provisioning for deadline-constrained tasks in VCC systems by leveraging the task replication technique (i.e., allowing one task to be executed by several server vehicles). A learning-based algorithm, called DATE-V (Deadline-Aware Task rEplication for Vehicular Cloud), is proposed to address the special issues in VCC systems including uncertainty of vehicle movements, volatile vehicle members, and large vehicle population. The proposed algorithm is developed based on a novel Contextual-Combinatorial Multi-Armed Bandit (CC-MAB) learning framework. DATE-V is `contextual because it utilizes side information (context) of vehicles and tasks to infer the completion probability of a task replication under random vehicle movements. DATE-V is `combinatorial because it aims to replicate the received task and send the task replications to multiple server vehicles to guarantee the service timeliness. We rigorously prove that our learning algorithm achieves a sublinear regret bound compared to an oracle algorithm that knows the exact completion probability of any task replications. Simulations are carried out based on real-world vehicle movement traces and the results show that DATE-V significantly outperforms benchmark solutions.
Software-defined internet of vehicles (SDIoV) has emerged as a promising paradigm to realize flexible and comprehensive resource management, for next generation automobile transportation systems. In this paper, a vehicular cloud computing-based SDIoV framework is studied wherein the joint allocation of transmission power and graph job is formulated as a nonlinear integer programming problem. To effectively address the problem, a structure-preservation-based two-stage allocation scheme is proposed that decouples template searching from power allocation. Specifically, a hierarchical tree-based random subgraph isomorphism mechanism is applied in the first stage by identifying potential mappings (templates) between the components of graph jobs and service providers. A structure-preserving simulated annealing-based power allocation algorithm is adopted in the second stage to achieve the trade-off between the job completion time and energy consumption. Extensive simulations are conducted to verify the performance of the proposed algorithms.