Do you want to publish a course? Click here

Time- and Momentum-resolved Gap Dynamics in Bi2Sr2CaCu2O8+delta

114   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use time- and angle-resolved photoemission spectroscopy to characterize the dynamics of the energy gap in superconducting Bi2Sr2CaCu2O8+delta (Bi2212). Photoexcitation drives the system into a nonequilibrium pseudogap state: Near the Brillouin zone diagonal (inside the normal-state Fermi arc), the gap completely closes for a pump fluence beyond F = 15 {mu}J/cm^2; toward the Brillouin zone face (outside the Fermi arc), it remains open to at least 24 {mu}J/cm^2. This strongly anisotropic gap response may indicate multiple competing ordering tendencies in Bi2212. Despite these contrasts, the gap recovers with relatively momentum-independent dynamics at all probed momenta, which shows the persistent influence of superconductivity both inside and outside the Fermi arc.



rate research

Read More

355 - R. Cortes , L. Rettig , Y. Yoshida 2010
The non-equilibrium state of the high-Tc superconductor Bi2Sr2CaCu2O8+delta and its ultrafast dynamics have been investigated by femtosecond time- and angle-resolved photoemission spectroscopy well below the critical temperature. We probe optically excited quasiparticles at different electron momenta along the Fermi surface and detect metastable quasiparticles near the antinode. Their decay through e-e scattering is blocked by a phase space restricted to the nodal region. The lack of momentum dependence in the decay rates is in agreement with relaxation dominated by Cooper pair recombination in a boson bottleneck limit.
Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state.
The mixing of orbital and spin character in the wave functions of the $5d$ iridates has led to predictions of strong couplings among their lattice, electronic and magnetic degrees of freedom. As well as realizing a novel spin-orbit assisted Mott-insulating ground state, the perovskite iridate Sr$_{2}$IrO$_{4}$ has strong similarities with the cuprate La$_{2}$CuO$_{4}$, which on doping hosts a charge-density wave that appears intimately connected to high-temperature superconductivity. These phenomena can be sensitively probed through momentum-resolved measurements of the lattice dynamics, made possible by meV-resolution inelastic x-ray scattering. Here we report the first such measurements for both parent and electron-doped Sr$_{2}$IrO$_{4}$. We find that the low-energy phonon dispersions and intensities in both compounds are well described by the same nonmagnetic density functional theory calculation. In the parent compound, no changes of the phonons on magnetic ordering are discernible within the experimental resolution, and in the doped compound no anomalies are apparent due to charge-density waves. These measurements extend our knowledge of the lattice properties of (Sr$_{1-x}$La$_{x}$)$_{2}$IrO$_{4}$ and constrain the couplings of the phonons to magnetic and charge order.
100 - Y. Cao , D. G. Mazzone , D. Meyers 2018
Many remarkable properties of quantum materials emerge from states with intricate coupling between the charge, spin and orbital degrees of freedom. Ultrafast photo-excitations of these materials hold great promise for understanding and controlling the properties of these states. Here we introduce time-resolved resonant inelastic X-ray scattering (trRIXS) as a means of measuring charge, spin and orbital excitations out of equilibrium. These excitations encode the correlations and interactions that determine the detailed properties of the states generated. After outlining the basic principles and instrumentation of tr-RIXS, we review our first observations of transient antiferromagnetic correlations in quasi-two dimensions in a photo-excited Mott insulator and present possible future routes of this fast-developing technique. The increasing number of X-ray free electron laser facilities not only enables tackling long-standing fundamental scientific problems, but also promises to unleash novel inelastic X-ray scattering spectroscopies
We have created a nonequilibrium population of antiferromagnetic spin-waves in Cr2O3, and characterized its dynamics, using frequency- and time-resolved nonlinear optical spectroscopy of the exciton-magnon transition. We observe a time-dependent pump-probe line shape, which results from excitation induced renormalization of the spin-wave band structure. We present a model that reproduces the basic characteristics of the data, in which we postulate the optical nonlinearity to be dominated by interactions with long-wavelength spin-waves, and the dynamics to be due to spin-wave thermalization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا