Do you want to publish a course? Click here

Asymmetries in core-collapse supernovae from maps of radioactive $^{44}$Ti in CassiopeiaA

112   0   0.0 ( 0 )
 Added by Brian Grefenstette
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. CassiopeiaA is a young, nearby, core-collapse remnant from which 44Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.



rate research

Read More

We present a broadband spectrum of gravitational waves from core-collapse supernovae (CCSNe) sourced by neutrino emission asymmetries for a series of full 3D simulations. The associated gravitational wave strain probes the long-term secular evolution of CCSNe and small-scale turbulent activity and provides insight into the geometry of the explosion. For non-exploding models, both the neutrino luminosity and the neutrino gravitational waveform will encode information about the spiral SASI. The neutrino memory will be detectable for a wide range of progenitor masses for a galactic event. Our results can be used to guide near-future decihertz and long-baseline gravitational-wave detection programs, including aLIGO, the Einstein Telescope, and DECIGO.
174 - I. Sagert , T. Fischer , M. Hempel 2011
We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compact hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
Ground-based optical spectra and Hubble Space Telescope images of ten core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. New observations of SN 1957D, 1970G, 1980K, and 1993J are included as part of the study. Blueshifted line emissions in oxygen and/or hydrogen with conspicuous line substructure are a common and long-lasting phenomenon in the late-time spectra. Followed through multiple epochs, changes in the relative strengths and velocity widths of the emission lines are consistent with expectations for emissions produced by interaction between SN ejecta and the progenitor stars circumstellar material. The most distinct trend is an increase in the strength of [O III]/([O I]+[O II]) with age, and a decline in Halpha/([O I]+[O II]) which is broadly consistent with the view that the reverse shock has passed through the H envelope of the ejecta in many of these objects. We also present a spatially integrated spectrum of the young Galactic supernova remnant Cassiopeia A (Cas A). Similarities observed between the emission line profiles of the 330 yr old Cas A remnant and decades old CCSNe suggest that observed emission line asymmetry in evolved CCSN spectra may be associated with dust in the ejecta, and that minor peak substructure typically interpreted as clumps or blobs of ejecta may instead be linked with large-scale rings of SN debris.
322 - Iair Arcavi 2017
Hydrogen-rich core collapse supernovae, known as Type II supernovae, are the most common type of stellar explosion realized in nature. They are defined by the presence of prominent hydrogen lines in their spectra. Type II supernovae are observed only in star-forming galaxies, and several events have been directly linked to massive star progenitors. Five main subclasses are identified: Type IIP (displaying a plateau in their light curve), Type IIL (displaying a light curve decline), Type IIn (displaying narrow emission lines), Type IIb (displaying increasingly strong He features with time) and 87A-likes (displaying long-rising light curves similar to that of SN 1987A). Type IIP supernovae have been robustly established as the explosions of red supergiants, while the progenitors of Type IILs remain elusive. Type IIns are likely linked to luminous blue variables, Type IIb progenitors may be interacting binary systems and the prototype of the 87A-like class was observed to be the explosion of a blue supergiant. The diversity in progenitor mass, metallicity, binarity and rotation is likely responsible for the diversity in observed explosion types, but the connection between progenitor parameters and supernova properties is not yet entirely understood theoretically nor fully mapped observationally. New observational methods for constraining this connection are currently being implemented, including the analyses of large samples of events, making use of very early data (obtained hours to days from explosion) and statistical studies of host-galaxy properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا