Do you want to publish a course? Click here

Spin-orbit coupling effects on spin-dependent inelastic electronic lifetimes in ferromagnets

129   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the 3d ferromagnets iron, cobalt and nickel we compute the spin-dependent inelastic electronic lifetimes due to carrier-carrier Coulomb interaction including spin-orbit coupling. We find that the spin-dependent density-of-states at the Fermi energy does not, in general, determine the spin dependence of the lifetimes because of the effective spin-flip transitions allowed by the spin mixing. The majority and minority electron lifetimes computed including spin-orbit coupling for these three 3-d ferromagnets do not differ by more than a factor of 2, and agree with experimental results.



rate research

Read More

Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driven effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.
We present an ab initio calculation of the k and spin-resolved electronic lifetimes in the half-metallic Heusler compounds Co(2)MnSi and Co(2)FeSi. We determine the spin-flip and spin-conserving contributions to the lifetimes and study in detail the behavior of the lifetimes around states that are strongly spin-mixed by spin-orbit coupling. We find that, for non-degenerate bands, the spin mixing alone does not determine the energy dependence of the (spin-flip) lifetimes. Qualitatively, the lifetimes reflect the lineup of electron and hole bands. We predict that different excitation conditions lead to drastically different spin-flip dynamics of excited electrons and may even give rise to an enhancement of the non-equilibrium spin polarization.
We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number.
We investigate ultrafast demagnetization due to electron-phonon interaction in a model band-ferromagnet. We show that the microscopic mechanism behind the spin dynamics due to electron-phonon interaction is the interplay of scattering and the precession around momentum-dependent effective internal spin-orbit magnetic fields. The resulting magnetization dynamics can only be mimicked by spin-flip transitions if the spin precession around the internal fields is sufficiently fast (compared to the scattering time) so that it averages out the transverse spin components.
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise solely due to interfacial spin-orbit coupling, namely Rashba-Eldestein effects at metal/insulator interfaces. In magnetically soft NiFe sandwiched between a weak spin-orbit metal (Ti) and insulator (Al$_2$O$_3$), this torque appears as an effective field, which is significantly larger than the Oersted field and sensitive to insertion of an additional layer between NiFe and Al$_2$O$_3$. Our findings point to new routes for tuning spin-orbit torques by engineering interfacial electric dipoles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا