Do you want to publish a course? Click here

Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt

153   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number.



rate research

Read More

For the 3d ferromagnets iron, cobalt and nickel we compute the spin-dependent inelastic electronic lifetimes due to carrier-carrier Coulomb interaction including spin-orbit coupling. We find that the spin-dependent density-of-states at the Fermi energy does not, in general, determine the spin dependence of the lifetimes because of the effective spin-flip transitions allowed by the spin mixing. The majority and minority electron lifetimes computed including spin-orbit coupling for these three 3-d ferromagnets do not differ by more than a factor of 2, and agree with experimental results.
We present an ab initio calculation of the k and spin-resolved electronic lifetimes in the half-metallic Heusler compounds Co(2)MnSi and Co(2)FeSi. We determine the spin-flip and spin-conserving contributions to the lifetimes and study in detail the behavior of the lifetimes around states that are strongly spin-mixed by spin-orbit coupling. We find that, for non-degenerate bands, the spin mixing alone does not determine the energy dependence of the (spin-flip) lifetimes. Qualitatively, the lifetimes reflect the lineup of electron and hole bands. We predict that different excitation conditions lead to drastically different spin-flip dynamics of excited electrons and may even give rise to an enhancement of the non-equilibrium spin polarization.
77 - Tao Hong , Y. Qiu , M. Matsumoto 2016
The notion of a quasiparticle, such as a phonon, a roton, or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra, and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.
We investigate half-metallicity in [001] stacked (CrAs)$_n$/(GaAs)$_n$ heterostructures with $n leq 3$ by means of a combined many-body and electronic structure calculation. Interface states in the presence of strong electronic correlations are discussed for the case $n=1$. For $n=2,3$ our results indicate that the minority spin half-metallic gap is suppressed by local correlations at finite temperatures, and continuously shrinks upon increasing the heterostructure period. Although around room temperature the magnetization of the heterostructure deviates by only $2%$ from the ideal integer value, finite temperature polarization at $E_F$ is reduced by at least $25%$. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers while lowest conduction states have a many-body origin. Our results, therefore, suggest that in these heterostructures holes and electrons remain separated among different layers.
The density of non-quasiparticle states in the ferrimagnetic full-Heuslers Mn$_2$VAl alloy is calculated from first principles upon appropriate inclusion of correlations. In contrast to most half-metallic compounds, this material displays an energy gap in the majority-spin spectrum. For this situation, non-quasiparticle states are located below the Fermi level, and should be detectable by spin-polarized photoemission. This opens a new way to study many-body effects in spintronic-related materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا