Do you want to publish a course? Click here

Complex magnetic differentiation of cobalts in Na$_{x}$CoO$_{2}$ with 22K Neel temperature

334   0   0.0 ( 0 )
 Added by Irek Mukhamedshin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single crystals of sodium cobaltates Na$_{x}$CoO$_{2}$ with $x approx 0.8$ were grown by the floating zone technique. Using electrochemical Na de-intercalation method we reduced the sodium content in the as-grown crystals down to pure phase with 22 K Neel temperature and $x approx 0.77$. The $^{59}$Co NMR study in the paramagnetic state of the $T_{N}=22$ K phase permitted us to evidence that at least 6 Co sites are differentiated. They could be separated by their magnetic behaviour into three types: a single site with cobalt close to non-magnetic Co$^{3+}$, two sites with the most magnetic cobalts in the system, and the remaining three sites displaying an intermediate behaviour. This unusual magnetic differentiation calls for more detailed NMR experiments on our well characterized samples.



rate research

Read More

$^{59}$Co NMR experiments have been performed on single crystals of the layered cobaltate Na$_{x}$CoO$_{2}$ with x=0.77 which is an antiferromagnet with Neel temperature $T_{N}=22$~K. In this metallic phase six Co sites are resolved in the NMR spectra, with distinct quadrupole frequencies $ u _{Q}$, magnetic shifts $K_{ZZ}$ and nuclear spin lattice relaxation rates $% 1/T_{1}$. Contrary to the $x=1/2$ or $x=2/3$ phases the 3D stacking of the Na planes is not perfect for $x=0.77$ but this does not influence markedly the electronic properties. We evidence that the magnetic and charge properties of the Co sites are highly correlated with each other as $K_{ZZ}$ and $(1/T_{1})^{1/2}$ scale linearly with $ u _{Q}$. The data analysis allows us to separate the contribution $ u_{Q}^{latt}$ of the ionic charges to $ u _{Q}$ from that $ u _{Q}^{el}$ due to the hole orbitals on the Co sites. We could extend coherently this analysis to all the known phases in the Na cobaltate phase diagram. The variation with $x$ of $ u _{Q}^{latt}$ is found to fit rather well numerical computations done in a point charge model. The second term $ u _{Q}^{el}$ allowed us to deduce the hole concentration on the cobalts. These detailed experimental results should stimulate theoretical calculations of the electronic structure involving both the Co orbital configurations and DMFT approaches to take into account the electronic correlations.
We report a systematic study of the $c$ lattice parameter in the Na$_{x}$CoO$_{2}$ phases versus Na content $x>0.5$, in which sodium always displays ordered arrangements. This allows us to single out the first phase which exhibits an AF magnetic order at a Neel temperature $T_{N}=$22 K which is found to occur for $xapprox 0.77(1)$. Pure samples of this phase have been studied both as aligned powders and single crystals. They exhibit identical $^{23}$Na NMR spectra in which three sets of Na sites could be fully resolved, and are found to display $T$ dependencies of their NMR shifts which scale with each other. This allows us to establish that the $T$ variation of the shifts is due to the paramagnetism of the Co sites with formal charge state larger than 3$^{+}$. The existence of a sodium site with axial charge symmetry and the intensity ratio between the sets of $^{23}$Na lines permits us to reveal that the 2D structure of the Na order corresponds to 10 Na sites on top of a 13 Co sites unit cell, that is with $x=10/13approx 0.77$. This structure fits with that determined from local density calculations and involves triangles of 3 Na sites located on top of Co sites (so called Na1 sites). The associated ordering of the Na vacancies is quite distinct from that found for $x<0.75$.
We have synthesized and characterized different stable phases of sodium cobaltates Na$_{x}$CoO$_{2}$ with sodium content $0.65<x<0.80$. We demonstrate that $^{23}$Na NMR allows to determine the difference in the susceptibility of the phases and reveals the presence of Na order in each phase. $^{59}$Co NMR experiments give clear evidence that Co charge disproportionation is a dominant feature of Na cobaltates. Only a small fraction ($approx$ 25%) of cobalts are in a non-magnetic Co$^{3+}$ charge state whereas electrons delocalize on the other cobalts. The magnetic and charge properties of the different Co sites are highly correlated with each other as their magnetic shift $K_{ZZ}$ scales linearly with their quadrupolar frequency $nu_Q$. This reflects the fact that the hole content on the Co orbitals varies from site to site. The unusual charge differentiation found in this system calls for better theoretical understanding of the incidence of the Na atomic order on the electronic structures of these compounds.
In this study, we synthesized single crystals of Na$_{x}$CoO$_{2}$ with $xsim0.8$ using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single crystal samples of stable Na ordered phases with $x=0.5-0.8$. Comparisons of the bulk magnetic properties with those observed in the Na ordered powder samples confirmed the high quality of these single crystal phases. The ab plane resistivity was measured for the Na ordered samples and it was quite reproducible for different sample batches. The data were analogous to those found in previous initial experimental studies on single crystals, but the lower residual resistivity and sharper anti-ferromagnetic transitions determined for our samples confirmed their higher quality.
We have synthesized and characterized the four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<xlesssim 0.75$. Above 100K they display similar Curie-Weiss spin susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ planes revealed respectively by $^{23}$Na NMR shift and spin lattice $T_{1}$ data. The Co disproportionate already above 300K into Co$^{3+}$ and $approx $Co$^{3.5+}$ in all phases, which allows us to understand that magnetism is favoured. Below 100K the paramagnetic properties become quite distinct, and a 3D magnetic order sets in only for $x=0.75$, so that charge order has a subtle incidence on the low $T$ energy scales and transverse magnetic couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا