Do you want to publish a course? Click here

Rheological Signatures of Gelation and Effect of Shear Melting on Aging Colloidal Suspension

138   0   0.0 ( 0 )
 Added by Yogesh Joshi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time tan{delta} is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.



rate research

Read More

Aqueous dispersion of Laponite, when exposed to carbon dioxide environment leads to in situ inducement of magnesium and lithium ions, which is, however absent when dispersion is exposed to air. Consequently, in the rheological experiments, Laponite dispersion preserved under carbon dioxide shows more spectacular enhancement in the elastic and viscous moduli as a function of time compared to that exposed to air. By measuring concentration of all the ions present in a dispersion as well as change in pH, the evolving inter-particle interactions among the Laponite particles is estimated. DLVO analysis of a limiting case is performed, wherein two particles approach each other in a parallel fashion a situation with maximum repulsive interactions. Interestingly it is observed that DLVO analysis explains the qualitative details of an evolution of elastic and viscous moduli remarkably well thereby successfully relating the macroscopic phenomena to the microscopic interactions.
135 - M. Lattuada , A. Zaccone , H. Wu 2016
Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition), dominated by the complex interplay between DLVO interactions and shear flow. The quantitative understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a systematic numerical study, based on the governing master kinetic equation (population-balance) for the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth, controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the reactivity of which increases along with their size growth. When their size reaches a critical threshold, a very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier between particles. This stage terminates when a dynamic balance between shear-induced aggregation and cluster breakage is reached. It is also observed that these systems are characterized by a cluster mass distribution that for a long time presents a well-defined bimodality. The model predictions are quantitatively in excellent agreement with available experimental data, showing how the theoretical picture is able to quantitatively account for the underlying nonequilibrum physics.
Investigating microstructure of suspensions with particles having anisotropic shape that share complex interactions is a challenging task leading to competing claims. This work investigates phase behavior of one such system: aqueous Laponite suspension, which is highly contested in the literature, using rheological and microscopic tools. Remarkably, we observe that over a broad range of Laponite (1.4 to 4 weight %) and salt concentrations (0 to 7 mM), the system overwhelmingly demonstrates all the rheological characteristics of the sol-gel transition leading to a percolated network. Analysis of the rheological response leads to fractal dimension that primarily depends on the Laponite concentration. We also obtain the activation energy for gelation, which is observed to decrease with increase in Laponite as well as salt concentration. Significantly, the cryo-TEM images of the post-gel state clearly show presence of a percolated network formed by inter-particle bonds. The present work therefore conclusively establishes the system to be in an attractive gel state resolving a long-standing debate in the literature.
We use numerical simulations to compute the equation of state of a suspension of spherical, self-propelled nanoparticles. We study in detail the effect of excluded volume interactions and confinement as a function of the system temperature, concentration and strength of the propulsion. We find a striking non-monotonic dependence of the pressure with the temperature, and provide simple scaling arguments to predict and explain the occurrence of such an anomalous behavior. We conclude the paper by explicitly showing how our results have an important implications for the effective forces exerted by fluids of self-propelled particles on passive, larger components.
In this work we study structural recovery of a soft glassy Laponite suspension by monitoring temporal evolution of elastic modulus under isothermal conditions as well as following step temperature jumps. Interestingly, evolution behavior under isothermal conditions indicates the rate, and not the path of structural recovery, to be dependent on temperature. The experiments carried out under temperature jump conditions however trace a different path of structural recovery, which shows strong dependence on temperature and the direction of change. Further investigation of the system suggests that this behavior can be attributed to restricted mobility of counterions associated with Laponite particle at the time of temperature change, which do not allow counterion concentration to reach equilibrium value associated with the changed temperature. Interestingly this effect is observed to be comparable with other glassy molecular and soft materials, which while evolve in a self-similar fashion under isothermal conditions, show asymmetric behavior upon temperature change.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا