No Arabic abstract
In this work we study structural recovery of a soft glassy Laponite suspension by monitoring temporal evolution of elastic modulus under isothermal conditions as well as following step temperature jumps. Interestingly, evolution behavior under isothermal conditions indicates the rate, and not the path of structural recovery, to be dependent on temperature. The experiments carried out under temperature jump conditions however trace a different path of structural recovery, which shows strong dependence on temperature and the direction of change. Further investigation of the system suggests that this behavior can be attributed to restricted mobility of counterions associated with Laponite particle at the time of temperature change, which do not allow counterion concentration to reach equilibrium value associated with the changed temperature. Interestingly this effect is observed to be comparable with other glassy molecular and soft materials, which while evolve in a self-similar fashion under isothermal conditions, show asymmetric behavior upon temperature change.
We study diffusion of heat in an aqueous suspension of disc shaped nanoparticles of Laponite, which has finite elasticity and paste-like consistency, by using the Mach-Zehnder interferometer. We estimate the thermal diffusivity of the suspension by comparing the experimentally obtained temperature distribution to that with analytical solution. We observe that despite highly constrained Brownian diffusivity of particles owing to its soft glassy nature, suspensions at very small concentrations of Laponite demonstrates significant enhancement in thermal diffusivity. We correlate the observed enhancement with the possible microstructures of the Laponite suspension.
Soft glassy materials are out of thermodynamic equilibrium and show time dependent slowing down of the relaxation dynamics. Under such situation these materials follow Boltzmann superposition principle only in the effective time domain, wherein time dependent relaxation processes are scaled by a constant relaxation time. In this work we extend effective time framework to successfully demonstrate time - temperature superposition of creep and stress relaxation data of a model soft glassy system comprised of clay suspension. Such superposition is possible when average relaxation time of the material changes with time and temperature without affecting shape of the spectrum. We show that variation in relaxation time as a function of temperature facilitates prediction of long and short time rheological behavior through time - temperature superposition from the experiments carried out over experimentally accessible timescales.
Aqueous suspension of nanoclay Laponite undergoes structural evolution as a function of time, which enhances its elasticity and relaxation time. In this work we employ effective time approach to investigate long term relaxation dynamics by carrying out creep experiments. Typically we observe that the monotonic evolution of elastic modulus shifts to lower aging times while maxima in viscous modulus gets progressively broader for experiments carried out on a later date since preparation (idle time) of nanoclay suspension. Application of effective time theory produces superposition of all the creep curves irrespective of their initial state. The resulting dependence of relaxation time on aging time shows very strong hyper aging dynamics at small idle times, which progressively weakens to demonstrate linear dependence in the limit of very large idle times. Remarkably this behavior of nanoclay suspension is akin to that observed for polymeric glasses. Consideration of aging as a first order process suggests that continued hyper-aging dynamics causes cessation of aging. The dependence of relaxation time on aging time, therefore, must attenuate eventually producing linear or weaker dependence on time in order to approach progressively low energy state in the limit of very large times as observed experimentally. We also develop a simple scaling model based on a concept of aging of an energy well, which qualitatively captures various experimental observations very well leading to profound insight into the hyper-aging dynamics of nano-clay suspensions.
Physical properties of out of equilibrium soft materials depend on time as well as deformation history. In this work we propose to transform this major shortcoming into gain by applying controlled deformation field to tailor the rheological properties. We take advantage of the fact that deformation field of a certain magnitude can prevent particles in an aging soft glassy material from occupying energy wells up to a certain depth, thereby populating only the deeper wells. We employ two soft glassy materials with dissimilar microstructures and demonstrate that increase in strength of deformation field while aging leads to narrowing of spectrum of relaxation times. We believe that, in principle, this philosophy can be universally applied to different kinds of glassy materials by changing nature and strength of impetus.
Synthetic hectorite clay Laponite RD/XLG is composed of disk-shaped nanoparticles that acquire dissimilar charges when suspended in an aqueous media. Owing to their property to spontaneously self-assemble, Laponite is used as a rheology modifier in a variety of commercial water-based products. Particularly, aqueous dispersion of Laponite undergoes liquid - to - solid transition at about 1 volume % concentration. The evolution of the physical properties as dispersion transforms to solid state is reminiscent of physical aging in molecular as well as colloidal glasses. The corresponding soft glassy dynamics of an aqueous Laponite dispersion, including the rheological behavior, has been extensively studied in the literature. In this feature article we take an overview of recent advances in understanding soft glassy dynamics and various efforts taken to understand the peculiar rheological behaviors. Furthermore, the continuously developing microstructure that is responsible for eventual formation of soft solid state that supports its own weight against gravity has also been a topic of intense debate and discussion. Particularly extensive experimental and theoretical studies lead to two types of microstructures for this system: an attractive gel-like or repulsive glass like. We carefully examine and critically analyze the literature and propose a state diagram that suggests aqueous Laponite dispersion to be present in an attractive gel state.