No Arabic abstract
Water in outflows from protostars originates either as a result of gas-phase synthesis from atomic oxygen at T > 200 K, or from sputtered ice mantles containing water ice. We aim to quantify the contribution of the two mechanisms that lead to water in outflows, by comparing observations of gas-phase water to methanol (a grain surface product) towards three low-mass protostars in NGC1333. In doing so, we also quantify the amount of methanol destroyed in outflows. To do this, we make use of JCMT and Herschel-HIFI data of H2O, CH3OH and CO emission lines and compare them to RADEX non-LTE excitation simulations. We find up to one order of magnitude decrease in the column density ratio of CH3OH over H2O as the velocity increases in the line wings up to ~15 km/s. An independent decrease in X(CH3OH) with respect to CO of up to one order of magnitude is also found in these objects. We conclude that gas-phase formation of H2O must be active at high velocities (above 10 km/s, relative to the source velocity) to re-form the water destroyed during sputtering. In addition, the transition from sputtered water at low velocities to formed water at high velocities must be gradual. We place an upper limit of two orders of magnitude on the destruction of methanol by sputtering effects.
Methanol and complex organic molecules have been found in cold starless cores, where a standard warm-up scenario would not work because of the absence of heat sources. A recent chemical model attributed the presence of methanol and large organics to the efficient chemical desorption and a class of neutral-neutral reactions that proceed fast at low temperatures in the gas phase. The model calls for a high abundance of methanol ice at the edge of the CO freeze-out zone in cold cloud cores. We performed medium resolution spectroscopy toward 3 field stars behind the starless core L1544 at 3 $mu$m to constrain the methanol ice abundance and compare it with the model predictions. One of the field stars shows a methanol-ice abundance of 11% with respect to water ice. This is higher than the typical methanol abundance previously found in cold cloud cores (4%), but is 4.5 times smaller than predicted. The reason for the disagreement between the observations and the model calculations is not yet understood.
Recent water line observations toward several low-mass protostars suggest low water gas fractional abundances in the inner warm envelopes. Water destruction by X-rays has been proposed to influence the water abundances in these regions, but the detailed chemistry, including the nature of alternative oxygen carriers, is not yet understood. In this study, we aim to understand the impact of X-rays on the composition of low-mass protostellar envelopes, focusing specifically on water and related oxygen bearing species. We compute the chemical composition of two low-mass protostellar envelopes using a 1D gas-grain chemical reaction network, under various X-ray field strengths. According to our calculations, outside the water snowline, the water gas abundance increases with $L_{mathrm{X}}$. Inside the water snowline, water maintains a high abundance of $sim 10^{-4}$ for small $L_{mathrm{X}}$, with water and CO being the dominant oxygen carriers. For large $L_{mathrm{X}}$, the water gas abundances significantly decrease just inside the water snowline (down to $sim10^{-8}-10^{-7}$) and in the innermost regions ($sim10^{-6}$). For these cases, the O$_{2}$ and O gas abundances reach $sim 10^{-4}$ within the water snowline, and they become the dominant oxygen carriers. The HCO$^{+}$ and CH$_{3}$OH abundances, which have been used as tracers of the water snowline, significantly increase/decrease within the water snowline, respectively, as the X-ray fluxes become larger. The abundances of some other dominant molecules, such as CO$_{2}$, OH, CH$_{4}$, HCN, and NH$_{3}$, are also affected by strong X-ray fields, especially within their own snowlines. These X-ray effects are larger in lower density envelope models. Future observations of water and related molecules (using e.g., ALMA and ngVLA) will access the regions around protostars where such X-ray induced chemistry is effective.
In the framework of the Water in Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 um transition obtained toward the young outflow L1157. The 179 um map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the water abundance and total cooling. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 um emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 um intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10^-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total water cooling is ~10^-1 Lo, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow.
Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
Within low-mass star formation, water vapor plays a key role in the chemistry and energy balance of the circumstellar material. The Herschel Space Observatory will open up the possibility to observe water lines originating from a wide range of excitation energies.Our aim is to simulate the emission of rotational water lines from envelopes characteristic of embedded low-mass protostars. A large number of parameters that influence the water line emission are explored: luminosity, density,density slope and water abundances.Both dust and water emission are modelled using full radiative transfer in spherical symmetry. The temperature profile is calculated for a given density profile. The H2O level populations and emission profiles are in turn computed with a non-LTE line code. The results are analyzed to determine the diagnostic value of different lines, and are compared with existing observations. Lines can be categorized in: (i) optically thick lines, including ground-state lines, mostly sensitive to the cold outer part; (ii) highly excited (E_u>200-250 K) optically thin lines sensitive to the abundance in the hot inner part; and (iii) lines which vary from optically thick to thin depending on the abundances. Dust influences the emission of water significantly by becoming optically thick at the higher frequencies, and by pumping optically thin lines. A good physical model of a source, including a correct treatment of dust, is a prerequisite to infer the water abundance structure and possible jumps at the evaporation temperature from observations. The inner warm (T>100 K) envelope can be probed byhighly-excited lines, while a combination of excited and spectrally resolved ground state lines probes the outer envelope. Observations of H218O lines, although weak, provide even stronger constraints on abundances.