Do you want to publish a course? Click here

Cross-over in non-standard random-matrix spectral fluctuations without unfolding

109   0   0.0 ( 0 )
 Added by Ruben Fossion
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, the singular value decomposition (SVD) was applied to standard Gaussian ensembles of Random Matrix Theory (RMT) to determine the scale invariance in the spectral fluctuations without performing any unfolding procedure. Here, SVD is applied directly to the $ u$-Hermite ensemble and to a sparse matrix ensemble, decomposing the corresponding spectra in trend and fluctuation modes. In correspondence with known results, we obtain that fluctuation modes exhibit a cross-over between soft and rigid behavior. By using the trend modes we performed a data-adaptive unfolding, and we calculate traditional spectral fluctuation measures. Additionally, ensemble-averaged and individual-spectrum averaged statistics are calculated consistently within the same basis of normal modes.



rate research

Read More

The fluctuations and correlations of matrix elements of cross sections are investigated in open systems that are chaotic in the classical limit. The form of the correlation functions is discussed within a statistical analysis and tested in calculations for a damped quantum kicked rotator. We briefly comment on the modifications expected for systems with slowly decaying correlations, a typical feature in mixed phase spaces.
171 - M. Turek , D. Spehner , S. Muller 2004
We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently developed techniques for the spectral form factor of systems with hyperbolic and ergodic underlying classical dynamics and f=2 degrees of freedom, that allow us to go beyond the diagonal approximation. First we extend these techniques to systems with f>2. Then we use these results to calculate the generalized form factor. We show that the dependence on the rescaled time in units of the Heisenberg time is universal for both the spectral and the generalized form factor. Furthermore, we derive a relation between the generalized form factor and the classical time-correlation function of the Weyl symbols of the quantum operators.
Exact analytical expressions for the cross-section correlation functions of chaotic scattering sys- tems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S)-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S-matrix contributions to the cross-section correla- tions are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S-matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and with experimental results is excellent.
123 - Bruno Eckhardt 2000
We discuss the fluctuation properties of diagonal matrix elements in the semiclassical limit in chaotic systems. For extended observables, covering a phase space area of many times Plancks constant, both classical and quantal distributions are Gaussian. If the observable is a projection onto a single state or an incoherent projection onto several states classical and quantal distribution differ, but the mean and the variance are still obtainable from classical considerations.
Parameter-dependent statistical properties of spectra of totally connected irregular quantum graphs with Neumann boundary conditions are studied. The autocorrelation functions of level velocities c(x) and c(w,x) as well as the distributions of level curvatures and avoided crossing gaps are calculated. The numerical results are compared with the predictions of Random Matrix Theory (RMT) for Gaussian Orthogonal Ensemble (GOE) and for coupled GOE matrices. The application of coupled GOE matrices was justified by studying localization phenomena in graphs wave functions Psi(x) using the Inverse Participation Ratio (IPR) and the amplitude distribution P(Psi(x)).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا