No Arabic abstract
We discuss the fluctuation properties of diagonal matrix elements in the semiclassical limit in chaotic systems. For extended observables, covering a phase space area of many times Plancks constant, both classical and quantal distributions are Gaussian. If the observable is a projection onto a single state or an incoherent projection onto several states classical and quantal distribution differ, but the mean and the variance are still obtainable from classical considerations.
We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently developed techniques for the spectral form factor of systems with hyperbolic and ergodic underlying classical dynamics and f=2 degrees of freedom, that allow us to go beyond the diagonal approximation. First we extend these techniques to systems with f>2. Then we use these results to calculate the generalized form factor. We show that the dependence on the rescaled time in units of the Heisenberg time is universal for both the spectral and the generalized form factor. Furthermore, we derive a relation between the generalized form factor and the classical time-correlation function of the Weyl symbols of the quantum operators.
The fluctuations and correlations of matrix elements of cross sections are investigated in open systems that are chaotic in the classical limit. The form of the correlation functions is discussed within a statistical analysis and tested in calculations for a damped quantum kicked rotator. We briefly comment on the modifications expected for systems with slowly decaying correlations, a typical feature in mixed phase spaces.
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic fluctuations. We identify a criterion, for the appearance of such non-linear terms. This depends on whether an invariant, symmetric tensor of the algebra can vanish or not. This proposal is studied in detail for the fundamental representation of $mathfrak{u}(2)$. We find a knotted structure for the attractor, a bimodal distribution for the largest Lyapunov exponent and that the dynamics takes place within the Cartan subalgebra, that does not contain only the identity matrix, thereby can describe the quantum fluctuations.
While plenty of results have been obtained for single-particle quantum systems with chaotic dynamics through a semiclassical theory, much less is known about quantum chaos in the many-body setting. We contribute to recent efforts to make a semiclassical analysis of many-body systems feasible. This is nontrivial due to both the enormous density of states and the exponential proliferation of periodic orbits with the number of particles. As a model system we study kicked interacting spin chains employing semiclassical methods supplemented by a newly developed duality approach. We show that for this model the line between integrability and chaos becomes blurred. Due to the interaction structure the system features (non-isolated) manifolds of periodic orbits possessing highly correlated, collective dynamics. As with the invariant tori in integrable systems, their presence lead to significantly enhanced spectral fluctuations, which by order of magnitude lie in-between integrable and chaotic cases.
Recently, the singular value decomposition (SVD) was applied to standard Gaussian ensembles of Random Matrix Theory (RMT) to determine the scale invariance in the spectral fluctuations without performing any unfolding procedure. Here, SVD is applied directly to the $ u$-Hermite ensemble and to a sparse matrix ensemble, decomposing the corresponding spectra in trend and fluctuation modes. In correspondence with known results, we obtain that fluctuation modes exhibit a cross-over between soft and rigid behavior. By using the trend modes we performed a data-adaptive unfolding, and we calculate traditional spectral fluctuation measures. Additionally, ensemble-averaged and individual-spectrum averaged statistics are calculated consistently within the same basis of normal modes.