No Arabic abstract
Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li1-xFex)N. An extrapolated, magnetic anisotropy field of 220 Tesla and a coercivity field of over 11 Tesla at 2 Kelvin outperform all known hard-ferromagnets and single-molecule magnets (SMMs). Steps in the hysteresis loops and relaxation phenomena in striking similarity to SMMs are particularly pronounced for x << 1 and indicate the presence of nano-scale magnetic centres. Quantum tunnelling, in form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 Kelvin. The simple crystal structure, the availability of large single crystals, and the ability to vary the Fe concentration make Li2(Li1-xFex)N (i) an ideal model system to study macroscopic quantum effects at elevated temperatures and (ii) a basis for novel functional magnetic materials.
The random substitutional solid solution between the antiferromagnetic (AFM) full-Heusler alloy Ru$_2$MnSn and the ferromagnetic (FM) full-Heusler alloy Ru$_2$FeSn provides a rare opportunity to study FM-AFM phase competition in a near-lattice-matched, cubic system, with full solubility. At intermediate $x$ in Ru$_2$Mn$_{1-x}$Fe$_x$Sn this system displays suppressed magnetic ordering temperatures, spatially coexisting FM and AFM order, and strong coercivity enhancement, despite rigorous chemical homogeneity. Here, we construct the most detailed temperature- and $x$-dependent understanding of the magnetic phase competition and coexistence in this system to date, combining wide-temperature-range neutron diffraction and small-angle neutron scattering with magnetometry and specific heat measurements on thoroughly characterized polycrystals. A complete magnetic phase diagram is generated, showing FM-AFM coexistence between $x approx 0.30$ and $x approx 0.70$. Important new insight is gained from the extracted length scales for magnetic phase coexistence (25-100 nm), the relative magnetic volume fractions and ordering temperatures, in addition to remarkable $x$-dependent trends in magnetic and electronic contributions to specific heat. An unusual feature in the magnetic phase diagram (an intermediate FM phase) is also shown to arise from an extrinsic effect related to a minor Ru-rich secondary phase. The established magnetic phase diagram is then discussed with the aid of phenomenological modeling, clarifying the nature of the mesoscale phase coexistence with respect to the understanding of disordered Heisenberg models.
The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an on demand control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on switchable molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular habitat offered by an antiphase boundary of the Rashba system BiAg$_2$ stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.
Results from transport measurements in individual $W_{x}V_{1-x}O_{2}$ nanowires with varying extents of $W$ doping are presented. An abrupt thermally driven metal-insulator transition (MIT) is observed in these wires and the transition temperature decreases with increasing $W$ content at a pronounced rate of - (48-56) K/$at.%W$, suggesting a significant alteration of the phase diagram from the bulk. These nanowires can also be driven through a voltage-driven MIT and the temperature dependence of the insulator to metal and metal to insulator switchings are studied. While driving from an insulator to metal, the threshold voltage at which the MIT occurs follows an exponential temperature dependence ($V_{THuparrow}proptoexp( icefrac{-T}{T_{0}})) $whereas driving from a metal to insulator, the threshold voltage follows $V_{THdownarrow}proptosqrt{T_{c}-T}$ and the implications of these results are discussed.
The low temperature excitations in the anisotropic antiferromagnetic Fe_{1-x} Zn_x F_2 for x=0.25 and 0.31, at and just above the magnetic percolation threshold concentration x_p=0.25, were measured using inelastic neutron scattering. The excitations were simulated for x=0.31 using a localized, classical excitation model, which accounts well for the energies and relative intensities of the excitations observed in the scattering experiments.
We report on the controlled switching of domain wall (DW) magnetization in aligned stripe domain structures, stabilized in [Co (0.44 nm)/Pt (0.7 nm)]$_X$ ($X = 48$, 100, 150) multilayers with perpendicular magnetic anisotropy. The switching process, induced by an external magnetic field, is monitored by measuring the evolution of the in-plane magnetization. % We show that the remanent in-plane magnetization originates from the polarization of the Bloch-type DWs. With micromagnetic simulations, we reveal that the reversal of the DW polarization is the result of the emergence and collapse of horizontal Bloch lines within the DWs at particular strengths of the external magnetic field, applied opposite to the DW polarization. Our findings are relevant for DW-based magnonics and bubble skyrmion applications in magnetic multilayers.