Do you want to publish a course? Click here

Absence of percolation in the Bernoulli Boolean model

156   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We consider the Bernoulli Boolean discrete percolation model on the d-dimensional integer lattice. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of percolation, provided that the intensity of the underlying point process is small enough. We also study a Harris graphical procedure to construct, forward in time, particle systems with interactions of infinite range under the assumption that the corresponding generator admits a Kalikow-type decomposition. We do so by using the subcriticality of the boolean model of discrete percolation.



rate research

Read More

We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model undergoes a non-trivial phase transition and proving the existence of a transition from exponential to power-law decay within some regions of the subcritical phase.
We prove that for Bernoulli percolation on $mathbb{Z}^d$, $dgeq 2$, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive short- or long-range models, and that $p_c^{bond} <1/2$ for certain families of triangulations for which Benjamini & Schramm conjectured that $p_c^{site} leq 1/2$.
75 - Pengfei Tang 2018
We prove that the heavy clusters are indistinguishable for Bernoulli percolation on quasi-transitive nonunimodular graphs. As an application, we show that the uniqueness threshold of any quasi-transitive graph is also the threshold for connectivity decay. This resolves a question of Lyons and Schramm (1999) in the Bernoulli percolation case and confirms a conjecture of Schonmann (2001). We also prove that every infinite cluster of Bernoulli percolation on a nonamenable quasi-transitive graph is transient almost surely.
We consider the discrete Boolean model of percolation on graphs satisfying a doubling metric condition. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of percolation, provided that the retention parameter of the underlying point process is small enough. We exhibit three families of interesting graphs where the main result of this work holds. Finally, we give sufficient conditions for ergodicity of the discrete Boolean model of percolation.
Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $dgeq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}({(0,dots,0)leftrightarrow (n,0,dots,0)})$ is a monotone function in $n$ when the parameter $p$ is close enough to 0. Analogously, we show that truncated connectivity function $P_{p}({(0,dots,0)leftrightarrow (n,0,dots,0), (0,dots,0) leftrightarrowinfty})$ is also a monotone function in $n$ when $p$ is close to 1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا