No Arabic abstract
Simple molecules like H2CO and CH3OH in protoplanetary disks are the starting point for the production of more complex organic molecules. So far, the observed chemical complexity in disks has been limited due to freeze out of molecules onto grains in the bulk of the cold outer disk. Complex molecules can be studied more directly in transitional disks with large inner holes, as these have a higher potential of detection, through UV heating of the outer disk and the directly exposed midplane at the wall. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 9 (~680 GHz) line data of the transitional disk Oph IRS 48, previously shown to have a large dust trap, to search for complex molecules in regions where planetesimals are forming. We report the detection of the H2CO 9(1,8)-8(1,7) line at 674 GHz, which is spatially resolved as a semi-ring at ~60 AU radius centered south from the star. The inferred H2CO abundance is ~10^{-8} derived by combining a physical disk model of the source with a non-LTE excitation calculation. Upper limits for CH3OH lines in the same disk give an abundance ratio H2CO/CH3OH>0.3, which points to both ice formation and gas-phase routes playing a role in the H2CO production. Upper limits on the abundances of H13CO+, CN and several other molecules in the disk are also derived and found to be consistent with full chemical models. The detection of the H2CO line demonstrates the start of complex organic molecules in a planet-forming disk. Future ALMA observations should be able to push down the abundance detection limits of other molecules by 1-2 orders of magnitude and test chemical models of organic molecules in (transitional) disks.
The processes that form transition disks - disks with depleted inner regions - are not well understood; possible scenarios include planet formation, grain growth and photoevaporation. Disks with spatially resolved dust holes are rare, but, in general, even less is known about the gas structure. The disk surrounding A0 star Oph IRS 48 in the nearby Rho Ophiuchus region has a 30 AU radius hole previously detected in the 18.7 micron dust continuum and in warm CO in the 5 micron fundamental ro-vibrational band. We present here Submillimeter Array 880 micron continuum imaging resolving an inner hole. However, the radius of the hole in the millimeter dust is only 13 AU, significantly smaller than measured at other wavelengths. The nesting structure of the disk is counter-intuitive, with increasingly large radii rings of emission seen in the millimeter dust (12.9 +1.7/-3.4 AU), 5 micron CO (30 AU) and 18.7 micron dust (peaking at 55 AU). We discuss possible explanations for this structure, including self-shadowing that cools the disk surface layers, photodissociation of CO, and photoevaporation. However, understanding this unusual disk within the stringent multi-wavelength spatial constraints will require further observations to search for cold atomic and molecular gas.
We present the first resolved near infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric sub-millimeter flux distribution. H-band polarized intensity images show a $sim$60AU radius scattered light cavity with two pronounced arcs of emission, one from Northeast to Southeast and one smaller, fainter and more distant arc in the Northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the Southwestern rim of the disk cavity. This arc meets the Northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the East-West brightness asymmetry in the H-band data. We also present 0.8-5.4$mu$m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0$pm$1 and measure a low mass accretion rate of 10$^{-8.5}$M$_{odot}$/yr, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the mutliwavelength SED of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
Azimuthally asymmetric dust distributions observed with ALMA in transition disks have been interpreted as dust traps. We present VLA Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at 0.2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 $pm0.9$ times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data is required for definitive confirmation.
Resolved submillimeter imaging of transitional disks is increasingly revealing the complexity of disk structure. Here we present the first high-resolution submillimeter image of a recently identified transitional disk around IRAS 04125+2902 in the Taurus star-forming region. We measure an inner disk hole of ~20 AU around IRAS 04125+2902 by simultaneously modeling new 880 micron Submillimeter Array (SMA) data along with an existing spectral energy distribution supplemented by new Discovery Channel Telescope (DCT) photometry. We also constrain the outer radius of the dust disk in IRAS~04125+2902 to ~50-60 AU. Such a small dust disk could be attributed to initial formation conditions, outward truncation by an unseen companion, or dust evolution in the disk. Notably, the dust distribution of IRAS 04125+2902 resembles a narrow ring (delta R ~ 35 AU) composed of large dust grains at the location of the disk wall. Such narrow dust rings are also seen in other transitional disks and may be evidence of dust trapping in pressure bumps, possibly produced by planetary companions. More sensitive submillimeter observations of the gas are necessary to further probe the physical mechanisms at work in shaping the spatial distribution of large dust in this disk. Interestingly, the IRAS 04125+2902 disk is significantly fainter than other transitional disks that have been resolved at submillimeter wavelengths, hinting that more objects with large disk holes may exist at the faint end of the submillimeter luminosity distribution that await detection with more sensitive imaging telescopes.
The protoplanetary disk around Ophiuchus IRS 48 shows an azimuthally asymmetric dust distribution in (sub-)millimeter observations, which is interpreted as a vortex, where millimeter/centimeter-sized particles are trapped at the location of the continuum peak. In this paper, we present 860 $mu$m ALMA observations of polarized dust emission of this disk. The polarized emission was detected toward a part of the disk. The polarization vectors are parallel to the disk minor axis, and the polarization fraction was derived to be $1-2$%. These characteristics are consistent with models of self-scattering of submillimeter-wave emission, which indicate a maximum grain size of $sim100$ $mu$m. However, this is inconsistent with the previous interpretation of millimeter/centimeter dust particles being trapped by a vortex. To explain both, ALMA polarization and previous ALMA and VLA observations, we suggest that the thermal emission at 860 $mu$m wavelength is optically thick ($tau_{rm abs}sim7.3$) at the dust trap with the maximum observable grain size of $sim100$ $mu$m rather than an optically thin case with $sim$ cm dust grains. We note that we cannot rule out that larger dust grains are accumulated near the midplane if the 860 $mu$m thermal emission is optically thick.