Do you want to publish a course? Click here

Electronic structure of BaNi$_2$P$_2$ observed by angle-resolved photoemission spectroscopy

272   0   0.0 ( 0 )
 Added by Shin-ichiro Ideta
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed an angle-resolved photoemission spectroscopy (ARPES) study of BaNi$_2$P$_2$ which shows a superconducting transition at $T_c$ $sim$ 2.5 K. We observed hole and electron Fermi surfaces (FSs) around the Brillouin zone center and corner, respectively, and the shapes of the hole FSs dramatically changed with photon energy, indicating strong three-dimensionality. The observed FSs are consistent with band-structure calculation and de Haas-van Alphen measurements. The mass enhancement factors estimated in the normal state were $m^*$/$m_b$ $leq$ 2, indicating weak electron correlation compared to typical iron-pnictide superconductors. An electron-like Fermi surface around the Z point was observed in contrast with BaNi$_2$As$_2$ and may be related to the higher $T_c$ of BaNi$_2$P$_2$.



rate research

Read More

We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
106 - P. Richard , C. Capan , J. Ma 2013
We used angle-resolved photoemission spectroscopy to investigate the electronic structure of EuFe$_2$As$_2$, EuFe$_2$As$_{1.4}$P$_{0.6}$ and EuFe$_2$P$_2$. We observed doubled core level peaks associated to the pnictide atoms, which are related to a surface state. Nevertheless, strong electronic dispersion along the $c$ axis, especially pronounced in EuFe$_2$P$_2$, is observed for at less one band, thus indicated that the Fe states, albeit probably affected at the surface, do not form pure two-dimensional surface states. However, this latter material shows reduced spectral weight near the Fermi level as compared to EuFe$_2$As$_2$ and EuFe$_2$As$_{1.4}$P$_{0.6}$. An anomalous jump is also found in the electronic states associated with the Eu$^{2+}$ $f$ states in EuFe$_2$P$_2$.
We present the first angle-resolved photoemission measurement on the single-layer Hg-based cuprate, HgBa$_2$CuO$_{4+delta}$ (Hg1201). A quasi-particle peak in the spectrum and a kink in the band dispersion around the diagonal of the Brillouin zone are observed, whereas no structure is detected near the Brillouin zone boundary. To search for a material-dependent trend among hole-doped cuprates, including Hg1201, we use a tight-binding model to fit their Fermi surfaces. We find a positive correlation between the $T_{c,mathrm{max}}$ and $t/t$, consistent with theoretical predictions.
High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb$_2$. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around $Gamma$ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb$_2$ is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb$_2$ and search for novel properties in this Dirac material.
268 - Y. Sekiba , T. Sato , K. Nakayama 2008
We have performed high-resolution angle-resolved photoemission spectroscopy on heavily electron-doped non-superconducting (SC) BaFe$_{1.7}$Co$_{0.3}$As$_2$. We find that the two hole Fermi surface pockets at the zone center observed in the hole-doped superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ are absent or very small in this compound, while the two electron pockets at the M point significantly expand due to electron doping by the Co substitution. Comparison of the Fermi surface between non-SC and SC samples indicates that the coexistence of hole and electron pockets connected via the antiferromagnetic wave vector is essential in realizing the mechanism of superconductivity in the iron-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا