Do you want to publish a course? Click here

Breaking mechanism from a vacuum point in the defocusing nonlinear Schroedinger equation

323   0   0.0 ( 0 )
 Added by Antonio Moro
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the wave breaking mechanism for the weakly dispersive defocusing nonlinear Schroedinger (NLS) equation with a constant phase dark initial datum that contains a vacuum point at the origin. We prove by means of the exact solution to the initial value problem that, in the dispersionless limit, the vacuum point is preserved by the dynamics until breaking occurs at a finite critical time. In particular, both Riemann invariants experience a simultaneous breaking at the origin. Although the initial vacuum point is no longer preserved in the presence of a finite dispersion, the critical behaviour manifests itself through an abrupt transition occurring around the breaking time.



rate research

Read More

350 - Jonatan Lenells 2014
It has been conjectured that the defocusing nonlinear Schrodinger (NLS) equation on the half-line does not admit solitons. We give a proof of this conjecture.
116 - Tao Xu , Sha Lan , Min Li 2018
By using the Darboux transformation, we obtain two new types of exponential-and-rational mixed soliton solutions for the defocusing nonlocal nonlinear Schrodinger equation. We reveal that the first type of solution can display a large variety of interactions among two exponential solitons and two rational solitons, in which the standard elastic interaction properties are preserved and each soliton could be either the dark or antidark type. By developing the asymptotic analysis technique, we also find that the second type of solution can exhibit the elastic interactions among four mixed asymptotic solitons. But in sharp contrast to the common solitons, the asymptotic mixed solitons have the t-dependent velocities and their phase shifts before and after interaction also grow with |t| in the logarithmical manner. In addition, we discuss the degenerate cases for such two types of mixed soliton solutions when the four-soliton interaction reduces to a three-soliton or two-soliton interaction.
189 - M. Bertola , A. Tovbis 2009
We consider the semiclassical (zero-dispersion) limit of the one-dimensional focusing Nonlinear Schroedinger equation (NLS) with decaying potentials. If a potential is a simple rapidly oscillating wave (the period has the order of the semiclassical parameter epsilon) with modulated amplitude and phase, the space-time plane subdivides into regions of qualitatively different behavior, with the boundary between them consisting typically of collection of piecewise smooth arcs (breaking curve(s)). In the first region the evolution of the potential is ruled by modulation equations (Whitham equations), but for every value of the space variable x there is a moment of transition (breaking), where the solution develops fast, quasi-periodic behavior, i.e., the amplitude becomes also fastly oscillating at scales of order epsilon. The very first point of such transition is called the point of gradient catastrophe. We study the detailed asymptotic behavior of the left and right edges of the interface between these two regions at any time after the gradient catastrophe. The main finding is that the first oscillations in the amplitude are of nonzero asymptotic size even as epsilon tends to zero, and they display two separate natural scales; of order epsilon in the parallel direction to the breaking curve in the (x,t)-plane, and of order epsilon ln(epsilon) in a transversal direction. The study is based upon the inverse-scattering method and the nonlinear steepest descent method.
We consider the Cauchy problem for the Gross-Pitaevskii (GP) equation. Using the DBAR generalization of the nonlinear steepest descent method of Deift and Zhou we derive the leading order approximation to the solution of the GP in the solitonic region of space time $|x| < 2t$ for large times and provide bounds for the error which decay as $t to infty$ for a general class of initial data whose difference from the non-vanishing background possesss a fixed number of finite moments and derivatives. Using properties of the scattering map for (GP) we derive as a corollary an asymptotic stability result for initial data which are sufficiently close to the N-dark soliton solutions of (GP).
298 - Y. S. Zhang , L. J. Guo , J. S. He 2014
The second-type derivative nonlinear Schrodinger (DNLSII) equation was introduced as an integrable model in 1979. Very recently, the DNLSII equation has been shown by an experiment to be a model of the evolution of optical pulses involving self-steepening without concomitant self-phase-modulation. In this paper the $n$-fold Darboux transformation (DT) $T_n$ of the coupled DNLSII equations is constructed in terms of determinants. Comparing with the usual DT of the soliton equations, this kind of DT is unusual because $T_n$ includes complicated integrals of seed solutions in the process of iteration. By a tedious analysis, these integrals are eliminated in $T_n$ except the integral of the seed solution. Moreover, this $T_n$ is reduced to the DT of the DNLSII equation under a reduction condition. As applications of $T_n$, the explicit expressions of soliton, rational soliton, breather, rogue wave and multi-rogue wave solutions for the DNLSII equation are displayed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا