No Arabic abstract
By using the Darboux transformation, we obtain two new types of exponential-and-rational mixed soliton solutions for the defocusing nonlocal nonlinear Schrodinger equation. We reveal that the first type of solution can display a large variety of interactions among two exponential solitons and two rational solitons, in which the standard elastic interaction properties are preserved and each soliton could be either the dark or antidark type. By developing the asymptotic analysis technique, we also find that the second type of solution can exhibit the elastic interactions among four mixed asymptotic solitons. But in sharp contrast to the common solitons, the asymptotic mixed solitons have the t-dependent velocities and their phase shifts before and after interaction also grow with |t| in the logarithmical manner. In addition, we discuss the degenerate cases for such two types of mixed soliton solutions when the four-soliton interaction reduces to a three-soliton or two-soliton interaction.
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analysing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in full analytical way, the number and the features (amplitude and velocity) of soliton-like excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits to predict and analyse the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
In this letter, for the discrete parity-time-symmetric nonlocal nonlinear Schr{o}dinger equation, we construct the Darboux transformation, which provides an algebraic iterative algorithm to obtain a series of analytic solutions from a known one. To illustrate, the breathing-soliton solutions, periodic-wave solutions and localized rational soliton solutions are derived with the zero and plane-wave solutions as the seeds. The properties of those solutions are also discussed, and particularly the asymptotic analysis reveals all possible cases of the interaction between the discrete rational dark and antidark solitons.
A new integrable (2+1)-dimensional nonlocal nonlinear Schrodinger equation is proposed. The $N$-soliton solution is given by Gram type determinant. It is found that the localized N-soliton solution has interesting interaction behavior which shows change of amplitude of localized pulses after collisions.
We consider solutions of the defocusing nonlinear Schrodinger (NLS) equation on the half-line whose Dirichlet and Neumann boundary values become periodic for sufficiently large $t$. We prove a theorem which, modulo certain assumptions, characterizes the pairs of periodic functions which can arise as Dirichlet and Neumann values for large $t$ in this way. The theorem also provides a constructive way of determining explicit solutions with the given periodic boundary values. Hence our approach leads to a class of new exact solutions of the defocusing NLS equation on the half-line.
We present doubly-periodic solutions of the infinitely extended nonlinear Schrodinger equation with an arbitrary number of higher-order terms and corresponding free real parameters. Solutions have one additional free variable parameter that allows to vary periods along the two axes. The presence of infinitely many free parameters provides many possibilities in applying the solutions to nonlinear wave evolution. Being general, this solution admits several particular cases which are also given in this work.