Do you want to publish a course? Click here

The Galactic plane at faint X-ray fluxes - II. Stacked X-ray spectra of a sample of serendipitous XMM-Newton sources

110   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the X-ray spectral properties of a sample of 138 X-ray sources detected serendipitously in $XMM-Newton$ observations of the Galactic plane, at an intermediate to faint flux level. We divide our sample into 5 subgroups according to the spectral hardness of the sources, and stack (i.e. co-add) the individual source spectra within each subgroup. As expected these stacked spectra show a softening trend from the hardest to the softest subgroups, which is reflected in the inferred line-of-sight column density. The spectra of the three hardest subgroups are characterized by a hard continuum plus superimpose Fe-line emission in the 6--7 keV bandpass. The average equivalent width (EW) of the 6.7-keV He-like Fe-K$alpha$ line is 170$^{+35}_{-32}$ eV, whereas the 6.4-keV Fe-K fluorescence line from neutral iron and the 6.9-keV H-like Fe-Ly$alpha$ line have EWs of 89$^{+26}_{-25}$ eV and 81$^{+30}_{-29}$ eV respectively, i.e. roughly half that of the 6.7-keV line. The remaining subgroups exhibit soft thermal spectra. Virtually all of the spectrally-soft X-ray sources can be associated with relatively nearby coronally-active late-type stars, which are evident as bright near-infrared (NIR) objects within the X-ray error circles. On a similar basis only a minority of the spectrally-hard X-ray sources have likely NIR identifications. The average continuum and Fe-line properties of the spectrally-hard sources are consistent with those of magnetic cataclysmic variables but the direct identification of large numbers of such systems in Galactic X-ray surveys, probing intermediate to faint flux levels, remains challenging.



rate research

Read More

We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)
88 - A. Georgakakis 2003
In this paper we investigate the properties of low X-ray-to-optical flux ratio sources detected in a wide area (2.5deg^2) shallow (f(0.5-8keV)~10e-14cgs) XMM-Newton survey. We find a total of 26 sources (5% of the total X-ray selected population) with log f_X/f_{opt}<-0.9 to the above flux limit. Optical spectroscopy is available for 20 of these low X-ray-to-optical flux ratio objects. Most of them are found to be associated with Galactic stars (total of 8) and broad line AGNs (total of 8).We also find two sources with optical spectra showing absorption and/or narrow emission lines and X-ray/optical properties suggesting AGN activity. Another two sources are found to be associated with low redshift galaxies with narrow emission line optical spectra, X-ray luminosities L_X(0.5-8keV)~10e41cgs and logf_X/f_opt ~ -2 suggesting `normal star-forming galaxies. Despite the small number statistics the sky density of `normal X-ray selected star-forming galaxies at the flux limit of the present sample is low consistent with previous ROSAT HRI deep surveys. Also, the number density estimated here is in good agreement with both the logN-logS of `normal galaxies in the Chandra Deep Field North (extrapolated to bright fluxes) and model predictions based on the X-ray luminosity function of local star-forming galaxies.
We investigate the serendipitous X-ray source population revealed in XMM-Newton observations targeted in the Galactic Plane within the region 315<l<45 and |b|<2.5 deg. Our study focuses on a sample of 2204 X-ray sources at intermediate to faint fluxes, which were detected in a total of 116 XMM fields and are listed in the 2XMMi catalogue. We characterise each source as spectrally soft or hard on the basis of whether the bulk of the recorded counts have energies below or above 2 keV and find that the sample divides roughly equally (56%:44%) into these soft and hard categories. The X-ray spectral form underlying the soft sources may be represented as either a power-law continuum with Gamma~2.5 or a thermal spectrum with kT~0.5 keV, with N_H ranging from 10^{20-22} cm^{-2}. For the hard sources, a significantly harder continuum form is likely, i.e., Gamma~1 with N_H=10^{22-24} cm^{-2}. For ~50% of the hard sources, the inferred column density is commensurate with the total Galactic line-of-sight value; many of these sources will be located at significant distances across the Galaxy implying a hard band luminosity L_X>10^{32} erg/s, whereas some will be extragalactic interlopers. >90% of the soft sources have potential NIR (2MASS and/or UKIDSS) counterparts inside their error circles, consistent with the dominant soft X-ray source population being relatively nearby coronally-active stars. These stellar counterparts are generally brighter than J=16, a brightness cutoff which corresponds to the saturation of the X-ray coronal emission at L_X=10^{-3} L_{bol}. In contrast, the success rate in finding likely IR counterparts to the hard X-ray sample is no more than ~15% down to J=16 and ~25% down to J=20, set against a rapidly rising chance coincidence rate. The make-up of the hard X-ray source population, in terms of the known classes of accreting and non-accreting systems, remains uncertain.
580 - Dacheng Lin 2013
We analyze 18 sources that were found to show interesting properties of periodicity, very soft spectra and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ~1.62 hr (2XMM J165334.4-414423) and ~2.1 hr (2XMM J133135.2-315541) and are probably magnetic cataclysmic variables. The source 2XMM J123103.2+110648 is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT~0.1 keV) and exhibiting an intermittent ~3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT<0.2 keV), which might be in other galaxies with luminosities between ~10^{38}-10^{42} erg/s. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10^{37} erg/s and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M 31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3--10 keV for at least four years since it was discovered to enter an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ~10^{34} erg/s if they are in our Galaxy, thus great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.
We present results for two Ultraluminous X-ray Sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by $sim$7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3--30 keV luminosities being $1.04^{+0.08}_{-0.06} times 10^{40}$ erg s$^{-1}$ for IC 342 X-1 and $7.40pm0.20 times 10^{39}$ erg s$^{-1}$ for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like black body component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk, or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا