Do you want to publish a course? Click here

Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2

433   0   0.0 ( 0 )
 Added by Olivier Delaire
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Materials with very low thermal conductivity are of high interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising to suppress thermal conductivity by scattering phonons, but challenges remain in producing bulk samples. We show that in crystalline AgSbTe$_2$, a spontaneously-forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mapping of the phonon mean-free-paths provides a novel bottom-up microscopic account of thermal conductivity, and also reveals intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe$_2$ leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and points to a new avenue in nano-scale engineering of materials, to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.

rate research

Read More

117 - Xiaokun Gu , Zheyong Fan , Hua Bao 2019
Understanding the mechanisms of thermal conduction in graphene is a long-lasting research topic, due to its high thermal conductivity. Peierls-Boltzmann transport equation (PBTE) based studies have revealed many unique phonon transport properties in graphene, but most previous works only considered three-phonon scatterings and relied on interatomic force constants (IFCs) extracted at 0 K. In this paper, we explore the roles of four-phonon scatterings and the temperature dependent IFCs on phonon transport in graphene through our PBTE calculations. We demonstrate that the strength of four-phonon scatterings would be severely overestimated by using the IFCs extracted at 0 K compared with those corresponding to a finite temperature, and four-phonon scatterings are found to significantly reduce the thermal conductivity of graphene even at room temperature. In order to reproduce the prediction from molecular dynamics simulations, phonon frequency broadening has to be taken into account when determining the phonon scattering rates. Our study elucidates the phonon transport properties of graphene at finite temperatures, and could be extended to other crystalline materials.
Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed matter systems like superfluid helium, superconductors and magnons - structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMnO3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities give rise to a Mexican hat shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U(1) symmetry could emulate structural condensed matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.
Atomically thin layer transition metal dichalcogenides have been intensively investigated for their rich optical properties and potential applications in nano-electronics. In this work, we study the incoherent optical phonon and exciton population dynamics in monolayer WS2 by time-resolved spontaneous Raman scattering spectroscopy. Upon excitation of the exciton transition, both the Stokes and anti-Stokes optical phonon scattering strength exhibit a large reduction. Based on the detailed balance, the optical phonon population is retrieved, which shows an instant build-up and a relaxation lifetime of around 4 ps at an exciton density E12 cm-2. The corresponding optical phonon temperature rises by 25 K, eventually, after some 10s of picoseconds, leading to a lattice heating by only around 3 K. The exciton relaxation dynamics extracted from the transient vibrational Raman response shows a strong excitation density dependence, signaling an important bi-molecular contribution to the decay. The exciton relaxation rate is found to be (70 ps)-1 and exciton-exciton annihilation rate 0.1 cm2s-1. These results provide valuable insight into the thermal dynamics after optical excitation and enhance the understanding of the fundamental exciton dynamics in two-dimensional transition metal materials.
212 - M. Ikeda , H. Euchner , X. Yan 2017
Crystalline solids are generally known as excellent heat conductors, amorphous materials or glasses as thermal insulators. It has thus come as a surprise that certain crystal structures defy this paradigm. A prominent example are type-I clathrates and other materials with guest-host structures. They sustain low-energy Einstein-like modes in their phonon spectra, but are also prone to various types of disorder and phonon-electron scattering and thus the mechanism responsible for their ultralow thermal conductivities has remained elusive. While recent ab initio lattice dynamics simulations show that the Einstein-like modes enhance phonon-phonon Umklapp scattering, they reproduce experimental data only at low temperatures. Here we show that a new effect, an all phononic Kondo effect, can resolve this discrepancy. This is evidenced by our thermodynamic and transport measurements on various clathrate single crystal series and their comparison with ab initio simulations. Our new understanding devises design strategies to further suppress the thermal conductivity of clathrates and other related materials classes, with relevance for the field of thermoelectric waste heat recovery but also more generally for phononic applications. More fundamentally, it may trigger theoretical work on strong correlation effects in phonon systems.
185 - O. Delaire , J. Ma , K. Marty 2011
Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا