No Arabic abstract
Understanding the mechanisms of thermal conduction in graphene is a long-lasting research topic, due to its high thermal conductivity. Peierls-Boltzmann transport equation (PBTE) based studies have revealed many unique phonon transport properties in graphene, but most previous works only considered three-phonon scatterings and relied on interatomic force constants (IFCs) extracted at 0 K. In this paper, we explore the roles of four-phonon scatterings and the temperature dependent IFCs on phonon transport in graphene through our PBTE calculations. We demonstrate that the strength of four-phonon scatterings would be severely overestimated by using the IFCs extracted at 0 K compared with those corresponding to a finite temperature, and four-phonon scatterings are found to significantly reduce the thermal conductivity of graphene even at room temperature. In order to reproduce the prediction from molecular dynamics simulations, phonon frequency broadening has to be taken into account when determining the phonon scattering rates. Our study elucidates the phonon transport properties of graphene at finite temperatures, and could be extended to other crystalline materials.
We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with temperature and exhibits a peak near T~280K ($pm$10K) due to the Umklapp process. At low temperatures (T<140K), the temperature dependent thermal conductivity scales as ~T^{1.5}, suggesting that the main contribution to thermal conductance arises from flexural acoustic (ZA) phonons in suspended SLG. The $sigma$/A reaches a high value of 1.7$times10^5 T^{1.5}$ W/m^2K, which is approaching the expected ballistic phonon thermal conductance for two-dimensional graphene sheets. Our results not only clarify the ambiguity in the thermal conductance, but also demonstrate the potential of Cu-CVD graphene for heat related applications.
The electron-phonon coupling strength in the spin-split valence band maximum of single-layer MoS$_2$ is studied using angle-resolved photoemission spectroscopy and density functional theory-based calculations. Values of the electron-phonon coupling parameter $lambda$ are obtained by measuring the linewidth of the spin-split bands as a function of temperature and fitting the data points using a Debye model. The experimental values of $lambda$ for the upper and lower spin-split bands at K are found to be 0.05 and 0.32, respectively, in excellent agreement with the calculated values for a free-standing single-layer MoS$_2$. The results are discussed in the context of spin and phase-space restricted scattering channels, as reported earlier for single-layer WS$_2$ on Au(111). The fact that the absolute valence band maximum in single-layer MoS$_2$ at K is almost degenerate with the local valence band maximum at $Gamma$ can potentially be used to tune the strength of the electron-phonon interaction in this material.
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G-band features originating from a double-resonant Raman process with q ot= 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q ot= 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q ot= 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.
Recent theory has demonstrated that the value of the electron-phonon coupling strength $lambda$ can be extracted directly from the thermal attenuation (Debye-Waller factor) of Helium atom scattering reflectivity. This theory is here extended to multivalley semimetal systems and applied to the case of graphene on different metal substrates and graphite. It is shown that $lambda$ rapidly increases for decreasing graphene-substrate binding strength. Two different calculational models are considered which produce qualitatively similar results for the dependence of $lambda$ on binding strength. These models predict, respectively, values of $lambda_{HAS} = 0.89$ and 0.32 for a hypothetical flat free-standing single-layer graphene with cyclic boundary conditions. The method is suitable for analysis and characterization of not only the graphene overlayers considered here, but also other layered systems such as twisted graphene bilayers.
Motivated by recent experimental observations of Tongay et al. [Tongay et al., Nano Letters, 12(11), 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E and E Raman peaks (E1g and E2g in bulk) exhibit significant red shifts (up to 30 cm-1), (2) the position of the A1 peak remains at 180 cm-1 (A1g in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear and (4) the electronic band structure undergoes a direct to indirect bandgap crossover under 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational and optical properties of single layer MoSe2 and similar MX2 dichalcogenides.