We give a short overview over recent work on finding constraints on partition functions of 2d CFTs from modular invariance. We summarize the constraints on the spectrum and their connection to Calabi-Yau compactifications.
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifold models and compare their characteristics. We start from a general formula for the Kahler potential as a function of the topological compactification data and study the structure of the curvature tensor. We then determine the conditions for the space to be symmetric and show that whenever this is the case the heterotic and the orientifold models give the same scalar manifold. We finally study the structure of scalar masses in this type of geometries, assuming that a generic superpotential triggers spontaneous supersymmetry breaking. We show in particular that their behavior crucially depends on the parameters controlling the departure of the geometry from the coset situation. We first investigate the average sGoldstino mass in the hidden sector and its sign, and study the implications on vacuum metastability and the mass of the lightest scalar. We next examine the soft scalar masses in the visible sector and their flavor structure, and study the possibility of realizing a mild form of sequestering relying on a global symmetry.
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.
We show that Calabi-Yau crystals generate certain Chern-Simons knot invariants, with Lagrangian brane insertions generating the unknot and Hopf link invariants. Further, we make the connection of the crystal brane amplitudes to the topological vertex formulation explicit and show that the crystal naturally resums the corresponding topological vertex amplitudes. We also discuss the conifold and double wall crystal model in this context. The results suggest that the free energy associated to the crystal brane amplitudes can be simply expressed as a target space Gopakumar-Vafa expansion.
We study when Calabi-Yau supermanifolds M(1|2) with one complex bosonic coordinate and two complex fermionic coordinates are super Ricci-flat, and find that if the bosonic manifold is compact, it must have constant scalar curvature.