Do you want to publish a course? Click here

Scalar geometry and masses in Calabi-Yau string models

161   0   0.0 ( 0 )
 Added by Claudio Scrucca
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifold models and compare their characteristics. We start from a general formula for the Kahler potential as a function of the topological compactification data and study the structure of the curvature tensor. We then determine the conditions for the space to be symmetric and show that whenever this is the case the heterotic and the orientifold models give the same scalar manifold. We finally study the structure of scalar masses in this type of geometries, assuming that a generic superpotential triggers spontaneous supersymmetry breaking. We show in particular that their behavior crucially depends on the parameters controlling the departure of the geometry from the coset situation. We first investigate the average sGoldstino mass in the hidden sector and its sign, and study the implications on vacuum metastability and the mass of the lightest scalar. We next examine the soft scalar masses in the visible sector and their flavor structure, and study the possibility of realizing a mild form of sequestering relying on a global symmetry.



rate research

Read More

We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which break the no-scale property may allow to lift these masses.
191 - Piotr Su{l}kowski 2007
This thesis is concerned with a realisation of topological theories in terms of statistical models known as Calabi-Yau crystals. The thesis starts with an introduction and review of topological field and string theories. Subsequently several new results are presented. The main focus of the thesis is on the topological string theory. In this case crystal models correspond to three-dimensional partitions and their relations with the topological vertex theory and knot invariants are studied. Two-dimensional crystal models corresponding to topological gauge theories on ALE spaces are also introduced and analysed. Essential mathematical tools are summarised in appendices.
245 - Christoph A. Keller 2013
We give a short overview over recent work on finding constraints on partition functions of 2d CFTs from modular invariance. We summarize the constraints on the spectrum and their connection to Calabi-Yau compactifications.
We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. These symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا