No Arabic abstract
By means of an envelope function analysis, we perform a numerical investigation of the conductance behavior of a graphene structure consisting of two regions (dots) connected to the entrance and exit leads through constrictions and separated by a potential barrier. We show that the conductance of the double dot depends on the symmetry of the structure and that this effect survives also in the presence of a low level of disorder, in analogy of what we had previously found for a double dot obtained in a semiconductor heterostructure. In graphene, this phenomenon is less dramatic and, in particular, conductance is not enhanced by the addition of symmetric constrictions with respect to that of the barrier alone.
We present Coulomb blockade measurements in a graphene double dot system. The coupling of the dots to the leads and between the dots can be tuned by graphene in-plane gates. The coupling is a non-monotonic function of the gate voltage. Using a purely capacitive model, we extract all relevant energy scales of the double dot system.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
We present transport measurements through an electrostatically defined bilayer graphene double quantum dot in the single electron regime. With the help of a back gate, two split gates and two finger gates we are able to control the number of charge carriers on two gate-defined quantum dot independently between zero and five. The high tunability of the device meets requirements to make such a device a suitable building block for spin-qubits. In the single electron regime, we determine interdot tunnel rates on the order of 2~GHz. Both, the interdot tunnel coupling, as well as the capacitive interdot coupling increase with dot occupation, leading to the transition to a single quantum dot. Finite bias magneto-spectroscopy measurements allow to resolve the excited state spectra of the first electrons in the double quantum dot; being in agreement with spin and valley conserving interdot tunneling processes.
We report markedly different transport properties of ABA- and ABC-stacked trilayer graphenes. Our experiments in double-gated trilayer devices provide evidence that a perpendicular electric field opens an energy gap in the ABC trilayer, while it causes the increase of a band overlap in the ABA trilayer. In a perpendicular magnetic field, the ABA trilayer develops quantum Hall plateaus at filling factors of u = 2, 4, 6... with a step of Delta u = 2, whereas the inversion symmetric ABC trilayer exhibits plateaus at u = 6 and 10 with 4-fold spin and valley degeneracy.
The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obtained from a tight-binding lattice description. A spectral gap, which may originate from strain effects, additional adsorbed atoms or substrate-induced sublattice-symmetry breaking, allows for bound and scattering states. As long as the diameter of the dot is much larger than the lattice constant, the results of the continuum and the lattice model are in very good agreement. We also investigate the influence of a sloping dot-potential step, of on-site disorder along the sample edges, of uncorrelated short-range disorder potentials in the bulk, and of random magnetic-fluxes that mimic ripple-disorder. The quantum dots spectral and transport properties depend crucially on the specific type of disorder. In general, the peaks in the density of bound states are broadened but remain sharp only in the case of edge disorder.