Do you want to publish a course? Click here

Measure of Diracness in two-dimensional semiconductors

121   0   0.0 ( 0 )
 Added by M. O. Goerbig
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the low-energy properties of two-dimensional direct-gap semiconductors, such as for example the transition-metal dichalcogenides MoS$_2$, WS$_2$, and their diselenide analogues MoSe$_2$, WSe$_2$, etc., which are currently intensively investigated. In general, their electrons have a mixed character -- they can be massive Dirac fermions as well as simple Schrodinger particles. We propose a measure (Diracness) for the degree of mixing between the two characters and discuss how this quantity can in principle be extracted experimentally, within magneto-transport measurements, and numerically via ab initio calculations.



rate research

Read More

Strong many-body interactions in two-dimensional (2D) semiconductors give rise to efficient exciton-exciton annihilation (EEA). This process is expected to result in the generation of unbound high energy carriers. Here, we report an unconventional photoresponse of van der Waals heterostructure devices resulting from efficient EEA. Our heterostructures, which consist of monolayer transition metal dichalcogenide (TMD), hexagonal boron nitride (hBN), and few-layer graphene, exhibit photocurrent when photoexcited carriers possess sufficient energy to overcome the high energy barrier of hBN. Interestingly, we find that the device exhibits moderate photocurrent quantum efficiency even when the semiconducting TMD layer is excited at its ground exciton resonance despite the high exciton binding energy and large transport barrier. Using ab initio calculations, we show that EEA yields highly energetic electrons and holes with unevenly distributed energies depending on the scattering condition. Our findings highlight the dominant role of EEA in determining the photoresponse of 2D semiconductor optoelectronic devices.
70 - A. Kudlis , I. Iorsh 2020
We analyze the many-particle correlations that affect the optical properties of two-dimensional semiconductors. These correlations manifest themselves through the specific optical resonances such as excitons, trions, etc. Starting from the generic electron-hole Hamiltonian and employing the microscopic Heisenberg equation of motion the infinite hierarchy of differential equations can be obtained. In order to decouple the system we address the cluster expansion technique which provides a regular procedure of consistent accounting of many-particle correlation contributions into the interband polarization dynamics. In particular, the partially taken into account three-particle correlations modify the behavior of absorption spectra with the emergence of a trion-like peak additional to excitonic ones. In contrast to many other approaches, the proposed one allows us to model the optical response of 2d semiconductors in the regime when the Fermi energies are of the order of the exciton and trion binding energies, thus allowing us to rigorously model the onset of the excitonic Mott transition, the regime being recently studied in various 2d semiconductors, such as transition metal dichalcogenides.
By performing high-throughput calculations using density functional theory combined with a semiempirical van der Waals dispersion correction, we screen 97 direct- and 253 indirect-gap two dimensional nonmagnetic semiconductors from near 1000 monolayers according to the energetic, thermodynamic, mechanical and dynamic stability criterions. We present the calculated results including lattice constants, formation energy, Youngs modulus, Poissons ratio, shear modulus, band gap, band structure, ionization energy and electron affinity for all the candidates satisfying our criteria.
Auger-like exciton-exciton annihilation (EEA) is considered the key fundamental limitation to quantum yield in devices based on excitons in two-dimensional (2d) materials. Since it is challenging to experimentally disentangle EEA from competing processes, guidance of a quantitative theory is highly desirable. The very nature of EEA requires a material-realistic description that is not available to date. We present a many-body theory of EEA based on first-principle band structures and Coulomb interaction matrix elements that goes beyond an effective bosonic picture. Applying our theory to monolayer MoS$_2$ encapsulated in hexagonal BN, we obtain an EEA coefficient in the order of $10^{-3}$ cm$^{2}$s$^{-1}$ at room temperature, suggesting that exciton annihilation is often dominated by other processes, such as defect-assisted scattering. Our studies open a perspective to quantify the efficiency of intrinsic EEA processes in various 2d materials in the focus of modern materials research.
Electrical contact resistance to two-dimensional (2D) semiconductors such as monolayer MoS_{2} is a key bottleneck in scaling the 2D field effect transistors (FETs). The 2D semiconductor in contact with three-dimensional metal creates unique current crowding that leads to increased contact resistance. We developed a model to separate the contribution of the current crowding from the intrinsic contact resistivity. We show that current crowding can be alleviated by doping and contact patterning. Using Landauer-Buttiker formalism, we show that van der Waals (vdW) gap at the interface will ultimately limit the electrical contact resistance. We compare our models with experimental data for doped and undoped MoS_{2} FETs. Even with heavy charge-transfer doping of > 2x10^{13} cm^{-2}, we show that the state-of-the-art contact resistance is 100 times larger than the ballistic limit. Our study highlights the need to develop efficient interface to achieve contact resistance of < 10 {Omega}.{mu}m, which will be ideal for extremely scaled devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا