In this paper we present expressions for the Drazin inverse of the generalized Schur complement $A-CD^{d}B$ in terms of the Drazin inverses of $A$ and the generalized Schur complement $D-BA^{d}C$ under less and weaker restrictions, which generalize several results in the literature and the formula of Sherman-Morrison-Woodbury type.
In this paper, we present three limit representations of the core-EP inverse. The first approach is based on the full-rank decomposition of a given matrix. The second and third approaches, which depend on the explicit expression of the core-EP inverse, are established. The corresponding limit representations of the dual core-EP inverse are also given. In particular, limit representations of the core and dual core inverse are derived
We show that the distribution of the scalar Schur complement in a noncentral Wishart matrix is a mixture of central chi-square distributions with different degrees of freedom. For the case of a rank-1 noncentrality matrix, the weights of the mixture representation arise from a noncentral beta mixture of Poisson distributions.
In this paper, we investigate the weighted core-EP inverse introduced by Ferreyra, Levis and Thome. Several computational representations of the weighted core-EP inverse are obtained in terms of singular-value decomposition, full-rank decomposition and QR decomposition. These representations are expressed in terms of various matrix powers as well as matrix product involving the core-EP inverse, Moore-Penrose inverse and usual matrix inverse. Finally, those representations involving only Moore-Penrose inverse are compared and analyzed via computational complexity and numerical examples.
In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.
This paper is devoted to the computation of transmission eigenvalues in the inverse acoustic scattering theory. This problem is first reformulated as a two by two boundary system of boundary integral equations. Next, utilizing the Schur complement technique, we develop a Schur complement operator with regularization to obtain a reduced system of boundary integral equations. The Nystr{o}m discretization is then used to obtain an eigenvalue problem for a matrix. We employ the recursive integral method for the numerical computation of the matrix eigenvalue. Numerical results show that the proposed method is efficient and reduces computational costs.