Do you want to publish a course? Click here

Fermi surface contours obtained from STM images around surface point defects

84   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical analysis of the standing wave patterns in STM images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects.



rate research

Read More

Surface-response functions are one of the most promising routes for bridging the gap between fully quantum-mechanical calculations and phenomenological models in quantum nanoplasmonics. Within all the currently available recipes for obtaining such response functions, emph{ab initio} calculations remain one of the most predominant, wherein the surface-response function are retrieved via the metals non-equilibrium response to an external perturbation. Here, we present a complementary approach where one of the most appealing surface-response functions, namely the Feibelman $d$-parameters, yield a finite contribution even in the case where they are calculated directly from the equilibrium properties described under the local-response approximation (LRA), but with a spatially varying equilibrium electron density. Using model calculations that mimic both spill-in and spill-out of the equilibrium electron density, we show that the obtained $d$-parameters are in qualitative agreement with more elaborate, but also more computationally demanding, emph{ab initio} methods. The analytical work presented here illustrates how microscopic surface-response functions can emerge out of entirely local electrodynamic considerations.
We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (d$I$/d$V$) constant. When archetypical C$_{60}$ molecules on Cu(111) are imaged with this method, these so-called iso-d$I$/d$V$ maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C$_{60}$ orbitals and their hybridization is then possible.
It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiraling Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field. In this case, the surface states obtains chiral nature from both drift motion and the chiral magnetic effect, resulting in Fermi arcs. We also discuss the important role played by the Imbert-Fedorov shift in the formation of surface Fermi arcs.
The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optical effects from bulk states only, disregarding topological surface responses. Here we propose a new (hitherto unknown) surface-only topological photocurrent response from chiral Fermi arcs. Using the ideal topological chiral semimetal RhSi as a representative, we quantitatively compute the topologically robust photocurrents from Fermi arcs on different surfaces. By rigorous crystal symmetry analysis, we demonstrate that Fermi arc photocurrents can be perpendicular to the bulk injection currents regardless of the choice of materials surface. We then generalize this finding to all cubic chiral space groups and predict material candidates. Our theory reveals a powerful notion where common crystalline-symmetry can be used to induce universal topological responses as well as making it possible to completely disentangle bulk and surface topological responses in many conducting material families.
The polar interface between LaAlO$_{3}$ and SrTiO$_{3}$ has shown promise as a field effect transistor, with reduced (nanoscale) feature sizes and potentially added functionality over conventional semiconductor systems. However, the mobility of the interfacial two-dimensional electron gas (2DEG) is lower than desirable. Therefore to progress, the highly debated origin of the 2DEG must be understood. Here we present a case for surface redox reactions as the origin of the 2DEG, in particular surface O vacancies, using a model supported by first principles calculations that describes the redox formation. In agreement with recent spectroscopic and transport measurements, we predict a stabilization of such redox processes (and hence Ti 3$d$ occupation) with film thickness beyond a critical value, which can be smaller than the critical thickness for 2D electronic conduction, since the surface defects generate trapping potentials that will affect the interface electron mobility. Several other recent experimental results, such as lack of core level broadening and shifts, find natural explanation. Pristine systems will likely require changed growth conditions or modified materials with a higher vacancy free energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا