Do you want to publish a course? Click here

I-Q relation for rapidly rotating neutron stars

435   0   0.0 ( 0 )
 Added by Jan Steinhoff
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a universal relation between moment of inertia and quadrupole moment of arbitrarily fast rotating neutron stars. Recent studies suggest that this relation breaks down for fast rotation. We find that it is still universal among various suggested equations of state for constant values of certain dimensionless parameters characterizing the magnitude of rotation. One of these parameters includes the neutron star radius, leading to a new universal relation expressing the radius through the mass, frequency, and spin parameter. This can become a powerful tool for radius measurements.



rate research

Read More

We use perturbation theory and the relativistic Cowling approximation to numerically compute characteristic oscillation modes of rapidly rotating relativistic stars which consist of a perfect fluid obeying a polytropic equation of state. We present a code that allows the computation of modes of arbitrary order. We focus here on the overall distribution of frequencies. As expected, we find an infinite pressure mode spectrum extending to infinite frequency. In addition we obtain an infinite number of inertial mode solutions confined to a finite, well-defined frequency range which depends on the compactness and the rotation frequency of the star. For non-axisymmetric modes we observe how this range is shifted with respect to the axisymmetric ones, moving towards negative frequencies and thus making all m>2 modes unstable. We discuss whether our results indicate that the stars spectrum must have a continuous part, as opposed to simply containing an infinite number of discrete modes.
99 - K.A. Postnov 2016
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $tau_c$. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 $M_odot$ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value $tau_c simeq 5 times 10^5$ years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being $sim 0.1-1%$ of the total core collapses, depending on the common envelope efficiency.
65 - Wenjie Sun , Dehua Wen , Jue Wang 2020
In the last few decades, lots of universal relations between different global physical quantities of neutron stars have been proposed to constrain the unobservable or hard to be observed properties of neutron stars. But few of them are related to the gravitational redshift or the gravitational binding energy, especially for the fast rotating neutron stars. Here we will focus on the universal relations related to these two quantities. Based on 11 equations of state (EOSs) from the predictions of microscopic nuclear many-body theories for normal or hybrid neutron stars, we proposed a set of new quasi-universal relations under three rotating cases: static, general rotating and Keplerian rotating. These new quasi-universal relations provide a potential way to constrain or estimate the unobservable or hard to be observed properties of neutron stars.
145 - Arkadip Basak 2017
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of neutron star than the Kepler frequency/mass shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic Equations of states (EOS) from the CompOSE database. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground based LIGO/VIRGO interferometers is also discussed very briefly.
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step towards incorporating these effects in waveform models by developing a relativistic effective action for the gravitomagnetic dynamics that clarifies a number of subtleties. Working in the slow-rotation limit, we first consider the post-Newtonian approximation and explicitly derive the effective action from the equations of motion. We demonstrate that this formulation opens a way to compute mode frequencies, yields insights into the relevant matter variables, and elucidates the role of a shift symmetry of the fluid properties under a displacement of the gravitomagnetic mode amplitudes. We then construct a fully relativistic action based on the symmetries and a power counting scheme. This action involves four coupling coefficients that depend on the internal structure of the neutron star and characterize the key matter parameters imprinted in the gravitational waves. We show that, after fixing one of the coefficients by normalization, the other three directly involve the two kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies. We discuss several interesting features and dynamical consequences of this action, and analyze the frequency-domain response function (the frequency-dependent ratio between the induced flux quadrupole and the external gravitomagnetic field), and a corresponding Love operator representing the time-domain response. Our results provide the foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear physics they encode, for gravitational-wave astronomy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا