Do you want to publish a course? Click here

Analysis and interpretation of 15 quarters of Kepler data of the disintegrating planet KIC 12557548 b

282   0   0.0 ( 0 )
 Added by Tim van Werkhoven
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kepler object KIC 12557548 shows irregular eclipsing behaviour with a constant 15.685 hr period, but strongly varying transit depth. In this paper we fit individual eclipses, in addition to fitting binned light curves, to learn more about the process underlying the eclipse depth variation. Additionally, we put forward observational constraints that any model of this planet-star system will have to match. We find two quiescent spells of ~30 orbital periods each where the transit depth is <0.1%, followed by relatively deep transits. Additionally, we find periods of on-off behaviour where >0.5% deep transits are followed by apparently no transit at all. Apart from these isolated events we find neither significant correlation between consecutive transit depths nor a correlation between transit depth and stellar intensity. We find a three-sigma upper limit for the secondary eclipse of 4.9*10^-5, consistent with a planet candidate with a radius of less than 4600 km. Using the short cadence data we find that a 1-D exponential dust tail model is insufficient to explain the data. We improved our model to a 2-D, two-component dust model with an opaque core and an exponential tail. Using this model we fit individual eclipses observed in short cadence mode. We find an improved fit of the data, quantifying earlier suggestions by Budaj (2013) of the necessity of at least two components. We find that deep transits have most absorption in the tail, and not in a disk-shaped, opaque coma, but the transit depth and the total absorption show no correlation with the tail length.

rate research

Read More

KIC 12557548 b is first of a growing class of intriguing disintegrating planet candidates, which lose mass in the form of a metal rich vapor that condenses into dust particles. Here, we follow up two perplexing observations of the system: 1) the transits appeared shallower than average in 2013 and 2014 and 2) the parameters derived from a high resolution spectrum of the star differed from other results using photometry and low resolution spectroscopy. We observe 5 transits of the system with the 61-inch Kuiper telescope in 2016 and show that they are consistent with photometry from the Kepler spacecraft in 2009-2013, suggesting that the dusty tail has returned to normal length and mass. We also evaluate high resolution archival spectra from the Subaru HDS spectrograph and find them to be consistent with a main-sequence Teff=4440 +/- 70 K star in agreement with the photometry and low resolution spectroscopy. This disfavors the hypothesis that planet disintegration affected the analysis of prior high resolution spectra of this star. We apply Principal Component Analysis to the Kepler long cadence data to understand the modes of disintegration. There is a tentative 491 day periodicity of the second principal component, which corresponds to possible long-term evolution of the dust grain sizes, though the mechanism on such long timescales remains unclear.
We present results of the final Kepler Data Processing Pipeline search for transiting planet signals in the full 17-quarter primary mission data set. The search includes a total of 198,709 stellar targets, of which 112,046 were observed in all 17 quarters and 86,663 in fewer than 17 quarters. We report on 17,230 targets for which at least one transit signature is identified that meets the specified detection criteria: periodicity, minimum of three observed transit events, detection statistic (i.e., signal-to-noise ratio) in excess of the search threshold, and passing grade on three statistical transit consistency tests. Light curves for which a transit signal is identified are iteratively searched for additional signatures after a limb-darkened transiting planet model is fitted to the data and transit events are removed. The search for additional planets adds 16,802 transit signals for a total of 34,032; this far exceeds the number of transit signatures identified in prior pipeline runs. There was a strategic emphasis on completeness over reliability for the final Kepler transit search. A comparison of the transit signals against a set of 3402 well-established, high-quality Kepler Objects of Interest yields a recovery rate of 99.8%. The high recovery rate must be weighed against a large number of false-alarm detections. We examine characteristics of the planet population implied by the transiting planet model fits with an emphasis on detections that would represent small planets orbiting in the habitable zone of their host stars.
The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatorys bandpass (0.42 um to 0.9 um). Observing the tails transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed towards a dust size of ~0.1 um for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8 um to 2.4 um) simultaneously with the MORIS imager taking r (0.63 um) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 um) using the Wide-Field IR Camera at the Palomar 200-inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548bs debris is likely composed of larger particles > ~0.5 um for pyroxene and olivine and > ~0.2 um for iron and corundum. The r photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.
We present simultaneous multi-color optical photometry using ULTRACAM of the transiting exoplanet KIC 12557548 b (also known as KIC 1255 b). This reveals, for the first time, the color dependence of the transit depth. Our g and z transits are similar in shape to the average Kepler short-cadence profile, and constitute the highest-quality extant coverage of individual transits. Our Night 1 transit depths are 0.85 +/- 0.04% in z; 1.00 +/- 0.03% in g; and 1.1 +/- 0.3% in u. We employ a residual-permutation method to assess the impact of correlated noise on the depth difference between the z and g bands and calculate the significance of the color dependence at 3.2{sigma}. The Night 1 depths are consistent with dust extinction as observed in the ISM, but require grain sizes comparable to the largest found in the ISM: 0.25-1{mu}m. This provides direct evidence in favor of this object being a disrupting low-mass rocky planet, feeding a transiting dust cloud. On the remaining four nights of observations the object was in a rare shallow-transit phase. If the grain size in the transiting dust cloud changes as the transit depth changes, the extinction efficiency is expected to change in a wavelength- and composition-dependent way. Observing a change in the wavelength-dependent transit depth would offer an unprecedented opportunity to determine the composition of the disintegrating rocky body KIC 12557548 b. We detected four out-of-transit u band events consistent with stellar flares.
We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The plane of the planets orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the latter half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced transits. The precession period is ~103 years, and during that cycle, transits are visible only ~8% of the time. This has the important implication that for every system like KIC 9632895 that we detect, there are ~12 circumbinary systems that exist but are not currently exhibiting transits. The planets mass is too small to noticeably perturb the binary, consequently its mass is not measurable with these data; but our photodynamical model places a 1-sigma upper limit of 16 Earth masses. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, and making it the third of ten Kepler circumbinary planets to do so.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا