Do you want to publish a course? Click here

The mechanism of caesium intercalation of graphene

147   0   0.0 ( 0 )
 Added by Marin Petrovi\\'c
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers, but the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali-atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also play a role for intercalation of layered materials.



rate research

Read More

The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a $(2 times 2)$ or a $(sqrt{3} times sqrt{3})$R$30^{circ}$ superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n-doping. The hybridization of the Ir surface state $S_1$ with Gr states is lifted, and the moire superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially as found by X-ray magnetic circular dichroism. The $(2 times 2)$ Eu structure displays plain paramagnetic behavior, whereas for the $(sqrt{3} times sqrt{3})$R$30^{circ}$ structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.
We investigate the effects of lithium intercalation in twisted bilayers of graphene, using first-principles electronic structure calculations. To model this system we employ commensurate supercells that correspond to twist angles of 7.34$^circ$ and 2.45$^circ$. From the energetics of lithium absorption we demonstrate that for low Li concentration the intercalants cluster in the AA regions with double the density of a uniform distribution. The charge donated by the Li atoms to the graphene layers results in modifications to the band structure that can be qualitatively captured using a continuum model with modified interlayer couplings in a region of parameter space that has yet to be explored either experimentally or theoretically. Thus, the combination of intercalation and twisted layers simultaneously provides the means for spatial control over material properties and an additional knob with which to tune moire physics in twisted bilayers of graphene, with potential applications ranging from energy storage and conversion to quantum information.
We show using scanning tunneling microscopy, spectroscopy, and ab initio calculations that several intercalation structures exist for Na in epitaxial graphene on SiC(0001). Intercalation takes place at room temperature and Na electron-dopes the graphene. It intercalates in-between single-layer graphene and the carbon-rich interfacial layer. It also penetrates beneath the interfacial layer and decouples it to form a second graphene layer. This decoupling is accelerated by annealing and is verified by direct Na deposition onto the interface layer. Our observations show that intercalation in graphene is fundamentally different than in graphite and is a versatile means of electronic control.
Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electro-chemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new hetero-interface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density $> 5 times 10^{13} cm^{-2}$ with mobility $> 10^3 cm^2/(Vs)$ in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.
When graphene is close to charge neutrality, its energy landscape is highly inhomogeneous, forming a sea of electron-like and hole-like puddles, which determine the properties of graphene at low carrier density. However, the details of the puddle formation have remained elusive. We demonstrate numerically that in sharp contrast to monolayer graphene, the normalized autocorrelation function for the puddle landscape in bilayer graphene depends only on the distance between the graphene and the source of the long-ranged impurity potential. By comparing with available experimental data, we find quantitative evidence for the implied differences in scanning tunneling microscopy measurements of electron and hole puddles for monolayer and bilayer graphene in nominally the same disorder potential.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا