No Arabic abstract
We investigate the effects of lithium intercalation in twisted bilayers of graphene, using first-principles electronic structure calculations. To model this system we employ commensurate supercells that correspond to twist angles of 7.34$^circ$ and 2.45$^circ$. From the energetics of lithium absorption we demonstrate that for low Li concentration the intercalants cluster in the AA regions with double the density of a uniform distribution. The charge donated by the Li atoms to the graphene layers results in modifications to the band structure that can be qualitatively captured using a continuum model with modified interlayer couplings in a region of parameter space that has yet to be explored either experimentally or theoretically. Thus, the combination of intercalation and twisted layers simultaneously provides the means for spatial control over material properties and an additional knob with which to tune moire physics in twisted bilayers of graphene, with potential applications ranging from energy storage and conversion to quantum information.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response, we see a strong peak in $sigma_{1} (omega)$ at $sim$2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.
We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states (EES) that appear at the AB-BA interfaces. The CEP form an hexagonal network with an unique energy scale $epsilon_p=frac{e^2}{epsilon_0epsilon t_0}$ with $t_0$ the moire lattice constant and $epsilon$ the dielectric constant. From the dielectric matrix we obtain the plasmon spectra that has two main characteristics: (i) a diverging density of states at zero energy, and (ii) the presence of a plasmonic Dirac cone at $hbaromegasimepsilon_p/2$ with sound velocity $v_D=0.0075c$, which is formed by zigzag and armchair current oscillations. A network model reveals that the antisymmetry of the plasmon bands implies that CEP scatter at the hexagon vertices maximally in the deflected chiral outgoing directions, with a current ratio of 4/9 into each of the deflected directions and 1/9 into the forward one. We show that scanning near-field microscopy should be able to observe the predicted plasmonic Dirac cone and its broken symmetry phases.
We study conductance across a twisted bilayer graphene coupled to single-layer graphene leads in two setups: a flake of graphene on top of an infinite graphene ribbon and two overlapping semi-infinite graphene ribbons. We find conductance strongly depends on the angle between the two graphene layers and identify three qualitatively different regimes. For large angles ($theta gtrsim 10^{circ}$) there are strong commensurability effects for incommensurate angles the low energy conductance approaches that of two disconnected layers, while sharp conductance features correlate with commensurate angles with small unit cells. For intermediate angles ($3^{circ}lesssim theta lesssim 10^{circ}$), we find a one-to-one correspondence between certain conductance features and the twist-dependent Van Hove singularities arising at low energies, suggesting conductance measurements can be used to determine the twist angle. For small twist angles ($1^{circ}lesssimthetalesssim 3^{circ}$), commensurate effects seem to be washed out and the conductance becomes a smooth function of the angle. In this regime, conductance can be used to probe the narrow bands, with vanishing conductance regions corresponding to spectral gaps in the density of states, in agreement with recent experimental findings.
When twisted to angles near 1{deg}, graphene multilayers provide a new window on electron correlation physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors, and unusual magnets. Here we report the discovery of a new member of the family, density-wave states, in double bilayer graphene twisted to 2.37{deg}. At this angle the moire states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with density-wave states, for equal electron and hole densities. These states can be tuned without introducing chemical dopants, thus opening the door to a new class of fundamental studies of density-waves and their interplay with superconductivity and other types of order, a central issue in quantum matter physics.
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns has opened new vistas in the topological materials landscape. Here we report on evidence, obtained by combining thermodynamic measurements, local and non-local transport measurements, and theoretical calculations, that robust topologically non-trivial, valley Chern insulators occur at charge neutrality in twisted double-bilayer graphene (TDBG). These time reversal-conserving valley Chern insulators are enabled by valley-number conservation, a symmetry that emerges from the moire pattern. The thermodynamic gap extracted from chemical potential measurements proves that TDBG is a bulk insulator under transverse electric field, while transport measurements confirm the existence of conducting edge states. A Landauer-Buttiker analysis of measurements on multi-terminal samples allows us to quantitatively assess edge state scattering and demonstrate that it does not destroy the edge states, leaving the bulk-boundary correspondence largely intact.