Do you want to publish a course? Click here

MOA-2008-BLG-379Lb: A Massive Planet from a High Magnification Event with a Faint Source

119   0   0.0 ( 0 )
 Added by Daisuke Suzuki Mr.
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report analysis of high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak, due to a massive planet with a mass ratio of q = 6.9 x 10^{-3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the MOA Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M_L = 0.66_{-0.33}^{+0.29} M_Sun orbited by a planet of mass m_P = 4.8_{-2.4}^{+2.1} M_Jup at an orbital separation of a = 4.1_{-1.5}^{+1.9} AU at a distance of D_L = 3.6 +/- 1.3 kpc. The faint source magnitude of I_S = 21.30 and relatively high lens-source relative proper motion of mu_rel = 7.6 +/- 1.6 mas/yr implies that high angular resolution adaptive optics or Hubble Space Telescope observations are likely to be able to detect the source star, which would determine the masses and distance of the planet and its host star.



rate research

Read More

We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90% confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is determined from two higher order microlensing parameters. One of these, the angular Einstein radius theta_E = 0.31 +- 0.03 mas, is very well measured, but the other (the microlens parallax pi_E, which is due to the Earths orbital motion) is highly degenate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6 yr, respectively.
We present the analysis of planetary microlensing event MOA-2011-BLG-291, which has a mass ratio of $q=(3.8pm0.7)times10^{-4}$ and a source star that is redder (or brighter) than the bulge main sequence. This event is located at a low Galactic latitude in the survey area that is currently planned for NASAs WFIRST exoplanet microlensing survey. This unusual color for a microlensed source star implies that we cannot assume that the source star is in the Galactic bulge. The favored interpretation is that the source star is a lower main sequence star at a distance of $D_S=4.9pm1.3,$kpc in the Galactic disk. However, the source could also be a turn-off star on the far side of the bulge or a sub-giant in the far side of the Galactic disk if it experiences significantly more reddening than the bulge red clump stars. However, these possibilities have only a small effect on our mass estimates for the host star and planet. We find host star and planet masses of $M_{rm host} =0.15^{+0.27}_{-0.10}M_odot$ and $m_p=18^{+34}_{-12}M_oplus$ from a Bayesian analysis with a standard Galactic model under the assumption that the planet hosting probability does not depend on the host mass or distance. However, if we attempt to measure the host and planet masses with host star brightness measurements from high angular resolution follow-up imaging, the implied masses will be sensitive to the host star distance. The WFIRST exoplanet microlensing survey is expected to use this method to determine the masses for many of the planetary systems that it discovers, so this issue has important design implications for the WFIRST exoplanet microlensing survey.
273 - N. Miyake , T. Sumi , Subo Dong 2010
We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlensing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}, which is half the mass of Saturn. This analysis also yields a planet-star three-dimensional separation of a = 2.4^{+1.2}_{-0.6} AU and a distance to the planetary system of D_L = 6.1^{+1.1}_{-1.2} kpc. This separation is ~ 2 times the distance of the snow line, a separation similar to most of the other planets discovered by microlensing.
Global second-generation microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups, without prompting alerts that could have led to dedicated follow-up observations. Fitting a microlensing model to the data, we find that the timescale of the event was t_E=23.2 +/-0.8 days, and the mass ratio between the lens star and its companion is q=0.028 +/-0.001. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.39 +0.45/-0.19 M_sun, at a distance of 7.56 +/-0.91 kpc. Thus, the companion is likely a planet of mass 11.6 +13.4/-5.6 M_J, at a projected separation of 4.3 +1.5/-1.2 AU, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems snow lines.
171 - Julia Janczak 2009
We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and so are not immediately apparent from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by Deltachi^2 ~ 880 for an additional three degrees of freedom. Detailed analysis yields a planet/star mass ratio q=(3.3+/-0.3)x10^{-4} and an angular separation between the planet and star within 10% of the angular Einstein radius. The small angular Einstein radius, theta_E=0.155+/-0.011 mas, constrains the distance to the lens to be D_L>6.0 kpc if it is a star (M_L>0.08 M_sun). This is the only microlensing exoplanet host discovered so far that must be in the bulge if it is a star. By analyzing VLT NACO adaptive optics images taken near the baseline of the event, we detect additional blended light that is aligned to within 130 mas of the lensed source. This light is plausibly from the lens, but could also be due to a companion to lens or source, or possibly an unassociated star. If the blended light is indeed due to the lens, we can estimate the mass of the lens, M_L=0.67+/-0.14 M_sun, planet mass m=74+/-17 M_Earth, and projected separation between the planet and host, 1.25+/-0.10 AU, putting it right on the snow line. If not, then the planet has lower mass, is closer to its host and is colder. To distinguish among these possibilities on reasonable timescales would require obtaining Hubble Space Telescope images almost immediately, before the source-lens relative motion of mu=5 mas yr^{-1} causes them to separate substantially.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا