No Arabic abstract
The formation of stars is usually accompanied by the launching of protostellar outflows. Observations with the Atacama Large Millimetre/sub-millimetre Array (ALMA) will soon revolutionalise our understanding of the morphologies and kinematics of these objects. In this paper, we present synthetic ALMA observations of protostellar outflows based on numerical magnetohydrodynamic collapse simulations. We find significant velocity gradients in our outflow models and a very prominent helical structure within the outflows. We speculate that the disk wind found in the ALMA Science Verification Data of HD 163296 presents a first instance of such an observation.
For a binary protostellar outflow system in which its members are located so close to each other (the separation being smaller than the addition of the widths of the flows) and with large opening angles, the collision seems unavoidable regardless of the orientation of the outflows. This is in contrast to the current observational evidence of just a few regions with indications of colliding outflows. Here, using sensitive observations of the Atacama Large Millimeter/Submillimeter Array (ALMA), we report resolved images of carbon monoxide (CO) towards the binary flows associated with the BHR71 protostellar system. These images reveal for the first time solid evidence that their flows are partially colliding, increasing the brightness of the CO, the dispersion of the velocities in the interaction zone, and changing part of the orientation in one of the flows. Additionally, this impact opened the possibility of knowing the 3D geometry of the system, revealing that one of its components (IRS2) should be closer to us.
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al. (2009), and using $^{12}$CO(J=2-1) archival data from the Submillimeter Array (SMA), we contrast two well known explosive objects, Orion KL and DR21, to HH211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment there are only two well established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. Main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the red with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position i.e. the place where its exciting source was located, contrary to the bulk of the molecular material within the protostellar outflows.
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.
We present Herschel/HIFI observations (WISH KP) of 14 water lines in a small sample of galactic massive protostellar objects: NGC6334I(N), DR21(OH), IRAS16272-4837, and IRAS05358+3543. We analyze the gas dynamics from the line profiles. Through modeling of the observations using RATRAN, we estimate outflow, infall, turbulent velocities, molecular abundances, and investigate any correlation with the evolutionary status of each source. The molecular line profiles exhibit a broad component coming from the shocks along the cavity walls associated with the protostars, and an infalling (or expansion for IRAS05358+3543) and passively heated envelope component, with highly supersonic turbulence likely increasing with the distance from the center. Accretion rates between 6.3 10^{-5} and 5.6 10^{-4} msun yr^{-1} are derived from the infall observed in three of our sources. The outer water abundance is estimated to be at the typical value of a few 10^{-8} while the inner abundance varies from 1.7 10^{-6} to 1.4 10^{-4} with respect to H2 depending on the source. We confirm that regions of massive star formation are highly turbulent and that the turbulence likely increases in the envelope with the distance to the star. The inner abundances are lower than the expected 10^{-4} perhaps because our observed lines do not probe deep enough into the inner envelope, or because photodissociation through protostellar UV photons is more efficient than expected. We show that the higher the infall/expansion velocity in the protostellar envelope, the higher is the inner abundance, maybe indicating that larger infall/expansion velocities generate shocks that will sputter water from the ice mantles of dust grains in the inner region. High-velocity water must be formed in the gas-phase from shocked material.
Most massive stars form in dense clusters where gravitational interactions with other stars may be common. The two nearest forming massive stars, the BN object and Source I, located behind the Orion Nebula, were ejected with velocities of $sim$29 and $sim$13 km s$^{-1}$ about 500 years ago by such interactions. This event generated an explosion in the gas. New ALMA observations show in unprecedented detail, a roughly spherically symmetric distribution of over a hundred $^{12}$CO J=2$-$1 streamers with velocities extending from V$_{LSR}$ =$-$150 to +145 km s$^{-1}$. The streamer radial velocities increase (or decrease) linearly with projected distance from the explosion center, forming a `Hubble Flow confined to within 50 arcseconds of the explosion center. They point toward the high proper-motion, shock-excited H$_2$ and [Fe ii ] `fingertips and lower-velocity CO in the H$_2$ wakes comprising Orions `fingers. In some directions, the H$_2$ `fingers extend more than a factor of two farther from the ejection center than the CO streamers. Such deviations from spherical symmetry may be caused by ejecta running into dense gas or the dynamics of the N-body interaction that ejected the stars and produced the explosion. This $sim$10$^{48}$ erg event may have been powered by the release of gravitational potential energy associated with the formation of a compact binary or a protostellar merger. Orion may be the prototype for a new class of stellar explosion responsible for luminous infrared transients in nearby galaxies.