Do you want to publish a course? Click here

Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions

178   0   0.0 ( 0 )
 Added by Maria Velez
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe domain pattern. A lateral thickness modulation of period $w$ is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods $lambda$ and average in-plane magnetization component $M_{inplane}$. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period $w$ becomes comparable to magnetic stripe period $lambda$, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.



rate research

Read More

Stripe domains are studied in perpendicular magnetic anisotropy films nanostructured with a periodic thickness modulation that induces the lateral modulation of both stripe periods and inplane magnetization. The resulting system is the 2D equivalent of a strained superlattice with properties controlled by interfacial misfit strain within the magnetic stripe structure and shape anisotropy. This allows us to observe, experimentally for the first time, the continuous structural transformation of a grain boundary in this 2D magnetic crystal in the whole angular range. The magnetization reversal process can be tailored through the effect of misfit strain due to the coupling between disclinations in the magnetic stripe pattern and domain walls in the in-plane magnetization configuration.
A rich variety of specific multidomain textures recently observed in antiferromagnetically coupled multilayers with perpendicular anisotropy include regular (equilibrium) multidomain states as well as different types of topological magnetic defects. Within a phenomenological theory we have classified and analyzed the possible magnetic defects in the antiferromagnetic ground state and determine their structures. We have derived the optimal sizes of the defects as functions of the antiferromagnetic exchange, the applied magnetic field, and geometrical parameters of the multilayer. The calculated magnetic phase diagrams show the existence regions for all types of magnetic defects. Experimental investigations of the remanent states (observed after different magnetic pre-history) in [Co/Pt]/Ru multilayers with wedged Co layers reveal a corresponding succession of different magnetic defect domain types.
We study the competition of magneto-dipole, anisotropy and exchange interactions in composite three dimensional multiferroics. Using Monte Carlo simulations we show that magneto-dipole interaction does not suppress the ferromagnetic state caused by the interaction of the ferroelectric matrix and magnetic subsystem. However, the presence of magneto-dipole interaction influences the order-disorder transition: depending on the strength of magneto-dipole interaction the transition from the ferromagnetic to the superparamagnetic state is accompanied either by creation of vortices or domains of opposite magnetization. We show that the temperature hysteresis loop occurs due to non-monotonic behavior of exchange interaction versus temperature. The origin of this hysteresis is related to the presence of stable magnetic domains which are robust against thermal fluctuations.
We report on the controlled switching of domain wall (DW) magnetization in aligned stripe domain structures, stabilized in [Co (0.44 nm)/Pt (0.7 nm)]$_X$ ($X = 48$, 100, 150) multilayers with perpendicular magnetic anisotropy. The switching process, induced by an external magnetic field, is monitored by measuring the evolution of the in-plane magnetization. % We show that the remanent in-plane magnetization originates from the polarization of the Bloch-type DWs. With micromagnetic simulations, we reveal that the reversal of the DW polarization is the result of the emergence and collapse of horizontal Bloch lines within the DWs at particular strengths of the external magnetic field, applied opposite to the DW polarization. Our findings are relevant for DW-based magnonics and bubble skyrmion applications in magnetic multilayers.
122 - N. Vernier , J.P. Adam , S.Eimer 2013
We present a method to map the saturation magnetization of soft ultrathin films with perpendicular anisotropy, and we illustrate it to assess the compositional dependence of the magnetization of CoFeB(1 nm)/MgO films. The method relies on the measurement of the dipolar repulsion of parallel domain walls that define a linear domain. The film magnetization is linked to the field compressibility of the domain. The method also yields the minimal distance between two walls before their merging, which sets a practical limit to the storage density in spintronic devices using domain walls as storage entities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا