Do you want to publish a course? Click here

Making and identifying optical superposition of very high orbital angular momenta

503   0   0.0 ( 0 )
 Added by Lixiang Chen
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the experimental preparation of optical superpositions of high orbital angular momenta(OAM). Our method is based on the use of spatial light modulator to modify the standard Laguerre-Gaussian beams to bear excessive phase helices. We demonstrate the surprising performance of a traditional Mach-Zehnder interferometer with one inserted Dove prism to identify these superposed twisted lights, where the high OAM numbers as well as their possible superpositions can be inferred directly from the interfered bright multiring lattices. The possibility of present scheme working at photon-count level is also shown using an electron multiplier CCD camera. Our results hold promise in high-dimensional quantum information applications when high quanta are beneficial.



rate research

Read More

This paper analyzes the algebraic and physical properties of the spin and orbital angular momenta of light in the quantum mechanical framework. The consequences of the fact that these are not angular momenta in the quantum mechanical sense are worked out in mathematical detail. It turns out that the spin part of the angular momentum has continuous eigenvalues. Particular attention is given to the paraxial limit, and to the definition of Laguerre--Gaussian modes for photons as well as classical light fields taking full account of the polarization degree of freedom.
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Youngs double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.
We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.
There is an interesting but not so popular quantity called pseudo orbital angular momentum (OAM) in the Landau-level system, besides the well-known canonical and mechanical OAMs. The pseudo OAM can be regarded as a gauge-invariant extension of the canonical OAM, which is formally gauge invariant and reduces to the canonical OAM in a certain gauge. Since both of the pseudo OAM and the mechanical OAM are gauge invariant, it is impossible to judge which of those is superior to the other solely from the gauge principle. However, these two OAMs have totally different physical meanings. The mechanical OAM shows manifest observability and clear correspondence with the classical OAM of the cyclotron motion. On the other hand, we demonstrate that the standard canonical OAM as well as the pseudo OAM in the Landau problem are the concepts which crucially depend on the choice of the origin of the coordinate system. We try to reveal the relation between the pseudo OAM and the mechanical OAM as well as their observability by paying special attention to the role of guiding-center operator in the Landau problem.
The coherent control of electron beams and ultrafast electron wave packets dynamics have attracted significant attention in electron microscopy as well as in atomic physics. In order to unify the conceptual pictures developed in both fields, we demonstrate the generation and manipulation of tailored electron orbital angular momentum (OAM) superposition states either by employing customized holographic diffraction masks in a transmission electron microscope or by atomic multiphoton ionization utilizing pulse-shaper generated carrier-envelope phase stable bichromatic ultrashort laser pulses. Both techniques follow similar physical mechanisms based on Fourier synthesis of quantum mechanical superposition states allowing the preparation of a broad set of electron states with uncommon symmetries. We describe both approaches in a unified picture based on an advanced spatial and spectral double slit and point out important analogies. In addition, we analyze the topological charge and discuss the control mechanisms of the free-electron OAM superposition states. Their generation and manipulation by phase tailoring in transmission electron microscopy and atomic multiphoton ionization is illustrated on a 7-fold rotationally symmetric electron density distribution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا