Do you want to publish a course? Click here

Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation

91   0   0.0 ( 0 )
 Added by James Strohaber
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Youngs double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

rate research

Read More

In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single photon to its polarization. Such transfer of quantum information, completely reversible, has been implemented adopting a electrically tunable q-plate device and a Sagnac interferomenter with a Doves prism. The adopted scheme exhibits a high fidelity and low losses.
A quasi-continuous composite perfect electric conductor-perfect magnetic conductor metasurface and a systematic metasurface design process are proposed for the orbital angular momentum (OAM) generation. The metasurfaces reflect the incident left circularly polarized (LCP)/right circularly polarized (RCP) plane wave to RCP/LCP vortex beams carrying OAM at normal or oblique direction. Unlike conventional metasurfaces that are composed of discrete scatterers, the scatterers on the proposed metasurface form a quasi-continuous pattern. The patterning of the metasurface is calculated through grating vectors, and no optimization of single scatterer is required. Furthermore, the distortions from local-response discontinuity of discrete scatterers are avoided. This letter provides great convenience to high-quality OAM generation.
We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance heralded single-photons generation by multiplexing the degree of the freedom of orbital angular momentum (OAM) of down-converted entangled photon pairs emitted from a nonlinear crystal. Experimentally, a proof-of-principle experiment has been performed through multiplexing three OAM modes. We achieve a 47$%$ enhancement in single photon rate. A second-order autocorrelation function $g^{(2)}(0)<0.5$ ensures our multiplexed heralded single photons with good single photon purity. We further indicate that an OAM-multiplexed HSPS with high quality can be constructed by generating higher dimensional entangled state and sorting them with high efficiency in OAM space. Our avenue may approach a good HSPS with the deterministic property.
The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM can be generated and coherently detected using ordinary electric dipole antennas. The results presented here could pave the way for novel radio OAM applications in technology and science, including radio communication, passive remote sensing, and new types of active (continuous or pulsed transmission) electromagnetic measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا