Do you want to publish a course? Click here

O(N) Models with Topological Lattice Actions

304   0   0.0 ( 0 )
 Added by Wolfgang Bietenholz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss weird lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear $sigma$-models). Amazingly, such weird lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.



rate research

Read More

We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. Thus our study underscores the robustness of universality, which persists even when basic principles of classical physics are violated. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. In the massless phase, the BKT value of the critical exponent eta_c is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility chi_t = l< Q^2 >/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
When studying quantum field theories and lattice models, it is often useful to analytically continue the number of field or spin components from an integer to a real number. In spite of this, the precise meaning of such analytic continuations has never been fully clarified, and in particular the symmetry of these theories is obscure. We clarify these issues using Deligne categories and their associated Brauer algebras, and show that these provide logically satisfactory answers to these questions. Simple objects of the Deligne category generalize the notion of an irreducible representations, avoiding the need for such mathematically nonsensical notions as vector spaces of non-integer dimension. We develop a systematic theory of categorical symmetries, applying it in both perturbative and non-perturbative contexts. A partial list of our results is: categorical symmetries are preserved under RG flows; continuous categorical symmetries come equipped with conserved currents; CFTs with categorical symmetries are necessarily non-unitary.
We study the conformal bootstrap for 3D CFTs with O(N) global symmetry. We obtain rigorous upper bounds on the scaling dimensions of the first O(N) singlet and symmetric tensor operators appearing in the $phi_i times phi_j$ OPE, where $phi_i$ is a fundamental of O(N). Comparing these bounds to previous determinations of critical exponents in the O(N) vector models, we find strong numerical evidence that the O(N) vector models saturate the bootstrap constraints at all values of N. We also compute general lower bounds on the central charge, giving numerical predictions for the values realized in the O(N) vector models. We compare our predictions to previous computations in the 1/N expansion, finding precise agreement at large values of N.
We investigate the cutoff effects in 2-d lattice O(N) models for a variety of lattice actions, and we identify a class of very simple actions for which the lattice artifacts are extremely small. One action agrees with the standard action, except that it constrains neighboring spins to a maximal relative angle delta. We fix delta by demanding that a particular value of the step scaling function agrees with its continuum result already on a rather coarse lattice. Remarkably, the cutoff effects of the entire step scaling function are then reduced to the per mille level. This also applies to the theta-vacuum effects of the step scaling function in the 2-d O(3) model. The cutoff effects of other physical observables including the renormalized coupling and the mass in the isotensor channel are also reduced drastically. Another choice, the mixed action, which combines the standard quadratic with an appropriately tuned large quartic term, also has extremely small cutoff effects. The size of cutoff effects is also investigated analytically in 1-d and at N = infinity in 2-d.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا