Do you want to publish a course? Click here

Topological Lattice Actions for the 2d XY Model

243   0   0.0 ( 0 )
 Added by Wolfgang Bietenholz
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. Thus our study underscores the robustness of universality, which persists even when basic principles of classical physics are violated. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. In the massless phase, the BKT value of the critical exponent eta_c is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.



rate research

Read More

A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss weird lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear $sigma$-models). Amazingly, such weird lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility chi_t = l< Q^2 >/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
The 2d O(3) model is widely used as a toy model for ferromagnetism and for Quantum Chromodynamics. With the latter it shares --- among other basic aspects --- the property that the continuum functional integral splits into topological sectors. Topology can also be defined in its lattice regularised version, but semi-classical arguments suggest that the topological susceptibility $chi_{rm t}$ does not scale towards a finite continuum limit. Previous numerical studies confirmed that the quantity $chi_{rm t}, xi^{2}$ diverges at large correlation length $xi$. Here we investigate the question whether or not this divergence persists when the configurations are smoothened by the Gradient Flow (GF). The GF destroys part of the topological windings; on fine lattices this strongly reduces $chi_{rm t}$. However, even when the flow time is so long that the GF impact range --- or smoothing radius --- attains $xi/2$, we do still not observe evidence of continuum scaling.
We study 2d U(1) gauge Higgs systems with a $theta$-term. For properly discretizing the topological charge as an integer we introduce a mixed group- and algebra-valued discretization (MGA scheme) for the gauge fields, such that the charge conjugation symmetry at $theta = pi$ is implemented exactly. The complex action problem from the $theta$-term is overcome by exactly mapping the partition sum to a worldline/worldsheet representation. Using Monte Carlo simulation of the worldline/worldsheet representation we study the system at $theta = pi$ and show that as a function of the mass parameter the system undergoes a phase transition. Determining the critical exponents from a finite size scaling analysis we show that the transition is in the 2d Ising universality class. We furthermore study the U(1) gauge Higgs systems at $theta = pi$ also with charge 2 matter fields, where an additional $Z_2$ symmetry is expected to alter the phase structure. Our results indicate that for charge 2 a true phase transition is absent and only a rapid crossover separates the large and small mass regions.
352 - Raghav G. Jha 2020
We consider the two-dimensional classical XY model on a square lattice in the thermodynamic limit using tensor renormalization group and precisely determine the critical temperature corresponding to the Berezinskii-Kosterlitz-Thouless (BKT) phase transition to be 0.89290(5) which is an improvement compared to earlier studies using tensor network methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا