Do you want to publish a course? Click here

Heteroepitaxial Growth and Multiferroic Properties of Mn-doped BiFeO3 films on SrTiO3 buffered III-V Semiconductor GaAs

175   0   0.0 ( 0 )
 Added by Guanyin Gao
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Epitaxial Mn-doped BiFeO3 (MBFO) thin films were grown on GaAs (001) substrate with SrTiO3 (STO) buffer layer by pulsed laser deposition. X-ray diffraction results demonstrate that the films show pure (00l) orientation, and MBFO(100)//STO(100), whereas STO (100)//GaAs (110). Piezoresponse force microscopy images and polarization versus electric field loops indicate that the MBFO films grown on GaAs have an effective ferroelectric switching. The MBFO films exhibit good ferroelectric behavior (2Pr ~ 92 {mu}C/cm2 and 2EC ~ 372 kV/cm). Ferromagnetic property with saturated magnetization of 6.5 emu/cm3 and coercive field of about 123 Oe is also found in the heterostructure at room temperature.



rate research

Read More

Strained coherent heteroepitaxy of III-V semiconductor films such as In$_x$Ga$_{1-x}$As/GaAs has potential for electronic and optoelectronic applications such as high density logic, quantum computing architectures, laser diodes, and other optoelectronic devices. Crystal symmetry can have a large effect on the morphology of these films and their spatial order. Often the formation of group IV strained heterostructures such as Ge deposited on Si is analyzed using analytic models based on the Asaro-Tiller-Grinfeld instability. However, the governing dynamics of III-V 3D heterostructure formation has different symmetry and is more anisotropic. The additional anisotropy appears in both the surface energy and the diffusivity. Here, the resulting anisotropic governing dynamics are studied to linear order. The resulting possible film morphologies are compared with experimentally observed In$_x$Ga$_{1-x}$As/GaAs films. Notably it is found that surface-energy anisotropy plays a role at least as important as surface diffusion anisotropy if not more so, in contrast to previous suppositions.
177 - D. Choudhury , B. Pal , A. Sharma 2013
Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.
Zinc-based nitride CaZn2N2 films grown by molecular beam epitaxy (MBE) with a plasma-assisted active nitrogen-radical source are promising candidates of next-generation semiconductors for light-emitting diodes and solar cells. This nitride compound has previously only been synthesized in a bulk form by ultrahigh-pressure synthesis at 5 GPa. Three key factors have been found to enable heteroepitaxial film growth: (i) precise tuning of the individual flux rates of Ca and Zn, (ii) the use of GaN template layers on sapphire c-plane as substrates, and (iii) the application of MBE with an active N-radical source. Because other attempts at physical vapor deposition and thermal annealing processes have not produced CaZn2N2 films of any phase, this rf-plasma-assisted MBE technique represents a promising way to stabilize CaZn2N2 epitaxial films. The estimated optical band gap is ~1.9 eV, which is consistent with the value obtained from bulk samples. By unintentional carrier doping, n- and p-type electronic conductions are attained with low carrier densities of the order of 1013 /cm3. These features represent clear advantages when compared with Zn-based oxide semiconductors, which usually have much higher carrier densities irrespective of their intentionally undoped state. The carrier mobilities at room temperature are 4.3 cm2/(Vs) for electrons and 0.3 cm2/(Vs) for hole carriers, which indicates that transport properties are limited by grain boundary scattering, mainly because of the low-temperature growth at 250 {deg}C, which realizes a high nitrogen chemical potential.
The influence of the deposition pressure PO2 and substrate temperature TS during the growth of Bi2FeCrO6 thin films grown by pulsed laser deposition has been investigated. It is found that the high volatility of Bi makes the deposition very difficult and that the growth of pure Bi2FeCrO6 thin films on SrTiO3 substrates is possible only in a narrow deposition parameter window. We find that the pure Bi2FeCrO6 phase is formed within a narrow window around an oxygen pressure PO2 =1.210-2 mbar and around a substrate temperature TS=680 degC. At lower temperature or higher pressure, Bi7.38Cr0.62O12+x_also called (b*Bi2O3)and Bi2Fe4O9 /Bi2(Fe,Cr)4O9+x phases are detected, while at lower pressure or higher temperature a (Fe,Cr)3O4 phase forms. Some of these secondary phases are not well known and have not been previously studied. We previously reported Fe/Cr cation ordering as the probable origin of the tenfold improvement in magnetization at saturation of our Bi2FeCrO6 film, compared to BiFeO3. Here, we address the effect of the degree of cationic ordering on the magnetic properties of the Bi2FeCrO6 single phase. Polarization measurements at room temperature reveal that our Bi2FeCrO6 films have excellent ferroelectric properties with ferroelectric hysteresis loops exhibiting a remanent polarization as high as 55-60 miroC/cm2 along the pseudocubic (001) direction.
The properties of epitaxial Bi2FeCrO6 thin films, recently synthesized by pulsed laser deposition, have partially confirmed the theoretical predictions (i.e. a magnetic moment of 2 muB per formula unit and a polarization of ~80 microC/cm2 at 0K). The existence of magnetic ordering at room temperature for this material is an unexpected but very promising result that needs to be further investigated. Since magnetism is assumed to arise from the exchange interaction between the Fe and Cr cations, the magnetic behaviour is strongly dependent on both their ordering and the distance between them. We present here the successful synthesis of epitaxial Bi2FexCryO6 (BFCO x/y) films grown on SrTiO3 substrates using dual crossed beam pulsed laser deposition. The crystal structure of the films has different types of (111)-oriented superstructures depending on the deposition conditions. The multiferroic character of BFCO (x/y) films is proven by the presence of both ferroelectric and magnetic hysteresis at room temperature. The oxidation state of Fe and Cr ions in the films is shown to be 3+ only and the difference in macroscopic magnetization with Fe/Cr ratio composition could only be due to ordering of the Cr3+ and Fe3+ cations therefore to the modification of the exchange interaction between them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا