Do you want to publish a course? Click here

A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

191   0   0.0 ( 0 )
 Added by Anna Vivas
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxys tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a distance modulus of 20.17 +/- 0.10 mags, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the dwarf Cepheids of Carina and those in Fornax and the LMC, the only extragalactic samples of dwarf Cepheids currently known. These differences may reflect a metallicity spread, depth along the line of sight and/or, different evolutionary paths of the dwarf Cepheid stars.



rate research

Read More

A large extension of the Sextans dwarf spheroidal galaxy, 7 sq degrees, has been surveyed for variable stars using the Dark Energy Camera at the Blanco Telescope in Cerro Tololo Inter-American Observatory, Chile. We report 7 Anomalous Cepheids, 199 RR Lyrae stars and 16 dwarf Cepheids in the field. This is only the fifth extra-galactic systems in which dwarf Cepheids have been systematically searched. Henceforth, the new stars increase the census of stars coming from different environments that can be used to asses the advantages and limitations of using dwarf Cepheids as standard candles in populations for which the metallicity is not necessarily known. The dwarf Cepheids found in Sextans have a mean period of 0.066 days, and a mean $g$ amplitude of 0.87 mags. They are located below the horizontal branch spanning a range of 0.8 mag, between $21.9 < g < 22.7$. The number of dwarf Cepheids in Sextans is low compared with other galaxies such as Carina, which have a strong intermediate-age population. On the other hand, the number and ratio of RR Lyrae stars to dwarf Cepheids is quite similar to Sculptor, a galaxy which, as Sextans, is dominated by an old stellar population. The dwarf Cepheid stars found in Sextans follow a well constrained Period-Luminosity relationship with an rms=0.05 mag in the $g$ band, which was set up by anchoring to the distance modulus given by the RR Lyrae stars. Although the majority of the variable stars in Sextans are located toward the center of the galaxy, we have found 2 RR Lyrae stars and 1 Anomalous Cepheid in the outskirts of the galaxy, which may be extra-tidal stars and suggest this galaxy may be undergoing tidal destruction. These possible extra-tidal variable stars share the same proper motions as Sextans, as seen by recent Gaia measurements.
We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
67 - L. Sbordone 2020
We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf Spheroidal Galaxy, by means of UVES high resolution spectra. The star, found in the outskirts of Sgr dSph, along the main body major axis, is a moderately metal poor giant (T$_{eff}$=4753 K, log g=1.75, [Fe/H]=-1.55), with [C/Fe]=1.13 placing it in the so-called high-carbon band, and strong s-process and r-process enrichment ([Ba/Fe]=1.4, [Eu/Fe]=1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C and s-process enrichment.
Carbon-enhanced metal-poor (CEMP) stars bear important imprints of the early chemical enrichment of any stellar system. While these stars are known to exist in copious amounts in the Milky Way halo, detailed chemical abundance data from the faint dwarf spheroidal (dSph) satellites are still sparse, although the relative fraction of these stars increases with decreasing metallicity. Here, we report the abundance analysis of a metal-poor ([Fe/H]=$-2.5$ dex), carbon-rich ([C/Fe]=1.4 dex) star, ALW-8, in the Carina dSph using high-resolution spectroscopy obtained with the ESO/UVES instrument. Its spectrum does not indicate any over-enhancements of neutron capture elements. Thus classified as a CEMP-no star, this is the first detection of this kind of star in Carina. Another of our sample stars, ALW-1, is shown to be a CEMP-$s$ star, but its immediate binarity prompted us to discard it from a detailed analysis. The majority of the 18 chemical elements we measured are typical of Carinas field star population and also agree with CEMP stars in other dSph galaxies. Similar to the only known CEMP-no star in the Sculptor dSph and the weak-$r$-process star HD 122563, the lack of any strong barium-enhancement is accompanied by a moderate overabundance in yttrium, indicating a weak $r$-process activity. The overall abundance pattern confirms that, also in Carina, the formation site for CEMP-no stars has been affected by both faint supernovae and by standard core collapse supernovae. Whichever process was responsible for the heavy element production in ALW-8 must be a ubiquitous source to pollute the CEMP-no stars, acting independently of the environment such as in the Galactic halo or in dSphs.
309 - B. Lemasle , V. Hill , E. Tolstoy 2011
The ages of individual Red Giant Branch stars (RGB) can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the 1st dredge-up). This means that they trace the ISM in the galaxy at the time the star formed, and hence the chemical enrichment history of the galaxy. CMD analysis has shown the Carina dwarf spheroidal (dSph) to have had an unusually episodic star formation history (SFH) which is expected to be reflected in the abundances of different chemical elements. We use the VLT-FLAMES spectrograph in HR mode (R~20000) to measure the abundances of several chemical elements in a sample of 35 RGB stars in Carina. We also combine these abundances with photometry to derive age estimates for these stars. This allows us to determine which of two distinct star formation (SF) episodes the stars in our sample belong to, and thus to define the relationship between SF and chemical enrichment during these two episodes. As is expected from the SFH, Carina contains two distinct populations of RGB stars: one old (>10 Gyr), which we have found to be metal-poor ([Fe/H]<-1.5), and alpha-rich ([Mg/Fe]>0.0); the other intermediate age (~2-6 Gyr), which we have found to have a metallicity range (-1.8<[Fe/H]<-1.2) with a large spread in [alpha/Fe] abundance, going from extremely low values ([Mg/Fe]<-0.3) to the same mean values as the older population (<[Mg/Fe]>~0.3). We show that the chemical enrichment history of the Carina dSph was different for each SF episode. The earliest was short (~2-3 Gyr) and resulted in the rapid chemical enrichment of the whole galaxy to [Fe/H] ~ -1.5 with both SNe II and SNe Ia contributions. The subsequent episode occured after a gap of ~3-4 Gyr and appears to have resulted in relatively little evolution in either [Fe/H] or [alpha/Fe].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا