Do you want to publish a course? Click here

A wide angle view of the Sagittarius dwarf spheroidal galaxy -- II. A CEMP-r/s star in the Sagittarius dwarf Spheroidal Galaxy

68   0   0.0 ( 0 )
 Added by Luca Sbordone
 Publication date 2020
  fields Physics
and research's language is English
 Authors L. Sbordone




Ask ChatGPT about the research

We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf Spheroidal Galaxy, by means of UVES high resolution spectra. The star, found in the outskirts of Sgr dSph, along the main body major axis, is a moderately metal poor giant (T$_{eff}$=4753 K, log g=1.75, [Fe/H]=-1.55), with [C/Fe]=1.13 placing it in the so-called high-carbon band, and strong s-process and r-process enrichment ([Ba/Fe]=1.4, [Eu/Fe]=1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C and s-process enrichment.



rate research

Read More

We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
73 - Lorenzo Monaco 2003
We present a study of the central parts of the Sagittarius dwarf spheroidal galaxy (Sgr). We found a clear overdensity of Sgrs stars around M~54 (hereafter NS). NS is well represented by a King model and it has the characteristics of a typical dwarf elliptical nucleus. Whether this means that M~54 has spiraled into the potential well of NS or that M~54 is the real nucleus and NS has formed into its potential wells, remains an open question to be addressed.
153 - Anirudh Chiti , Anna Frebel 2019
We present the metallicities and carbon abundances of four newly discovered metal-poor stars with $ -2.2 <$ [Fe/H] $< -1.6$ in the Sagittarius dwarf spheroidal galaxy. These stars were selected as metal-poor member candidates using a combination of public photometry from the SkyMapper Southern Sky Survey and proper motion data from the second data release from the Gaia mission. The SkyMapper filters include a metallicity-sensitive narrow-band $v$ filter centered on the Ca II K line, which we use to identify metal-poor candidates. In tandem, we use proper motion data to remove metal-poor stars that are not velocity members of the Sagittarius dwarf spheroidal galaxy. We find that these two datasets allow for efficient identification of metal-poor members of the Sagittarius dwarf galaxy to follow-up with further spectroscopic study. Two of the stars we present have [Fe/H] $< -2.0$, which adds to the few other such stars currently identified in the Sagittarius dwarf galaxy that are likely not associated with the globular cluster M54, which resides in the nucleus of the system. Our results confirm that there exists a very metal-poor stellar population in the Sagittarius dwarf galaxy. We find that none of our stars can be classified as carbon-enhanced metal-poor stars. Efficiently identifying members of this population will be helpful to further our understanding of the early chemical evolution of the system.
114 - Eugenio Carretta 2017
As part of our on-going project on the homogeneous chemical characterization of multiple stellar populations in globular clusters (GCs), we studied NGC 5634, associated to the Sagittarius dwarf spheroidal galaxy, using high-resolution spectroscopy of red giant stars collected with FLAMES@VLT. We present here the radial velocity distribution of the 45 observed stars, 43 of which are member, the detailed chemical abundance of 22 species for the seven stars observed with UVES-FLAMES, and the abundance of six elements for stars observed with GIRAFFE. On our homogeneous UVES metallicity scale we derived a low metallicity [Fe/H]=-1.867 +/-0.019 +/-0.065 dex (+/-statistical +/-systematic error) with sigma=0.050 dex (7 stars). We found the normal anti-correlations between light elements (Na and O, Mg and Al), signature of multiple populations typical of massive and old GCs. We confirm the associations of NGC 5634 to the Sgr dSph, from which the cluster was lost a few Gyr ago, on the basis of its velocity and position and the abundance ratios of alpha and neutron capture elements.
Carbon-enhanced metal-poor (CEMP) stars bear important imprints of the early chemical enrichment of any stellar system. While these stars are known to exist in copious amounts in the Milky Way halo, detailed chemical abundance data from the faint dwarf spheroidal (dSph) satellites are still sparse, although the relative fraction of these stars increases with decreasing metallicity. Here, we report the abundance analysis of a metal-poor ([Fe/H]=$-2.5$ dex), carbon-rich ([C/Fe]=1.4 dex) star, ALW-8, in the Carina dSph using high-resolution spectroscopy obtained with the ESO/UVES instrument. Its spectrum does not indicate any over-enhancements of neutron capture elements. Thus classified as a CEMP-no star, this is the first detection of this kind of star in Carina. Another of our sample stars, ALW-1, is shown to be a CEMP-$s$ star, but its immediate binarity prompted us to discard it from a detailed analysis. The majority of the 18 chemical elements we measured are typical of Carinas field star population and also agree with CEMP stars in other dSph galaxies. Similar to the only known CEMP-no star in the Sculptor dSph and the weak-$r$-process star HD 122563, the lack of any strong barium-enhancement is accompanied by a moderate overabundance in yttrium, indicating a weak $r$-process activity. The overall abundance pattern confirms that, also in Carina, the formation site for CEMP-no stars has been affected by both faint supernovae and by standard core collapse supernovae. Whichever process was responsible for the heavy element production in ALW-8 must be a ubiquitous source to pollute the CEMP-no stars, acting independently of the environment such as in the Galactic halo or in dSphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا